Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu trả lời là không nhé.. ta có thể chứng minh:
Giả sử : A,B là 2 số chính phương... \(\sqrt{A}=a\)
\(\sqrt{B}=b\) c là số không chính phương.
tích A.B.c.......... \(\sqrt{A.Bc}=a.b\sqrt{c}\)mà c ko là số chính phương suy ra tích 3 số này ko là số chính phương nha
Gọi 5 số chính phương liên tiếp là: \(\left(n-2\right)^2;\left(n-1\right)^2;n^2;\left(n+1\right)^2;\left(n+2\right)^2\)
Ta có: \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5n^2+10\)
\(=5\left(n^2+2\right)\)
Để tổng này là số chính phương thì n2 + 2 phải chia hết cho 5 hay n2 + 2 có tận cùng là 0, hoặc 5, hay n2 phải có tận cùng là 3, hoặc 8.
Mà n2 là số chính phương nên không bao giờ có số tận cùng là 3 hoặc 8.
Vậy tổng của 5 số chính phương liên tiếp khác 0 không thể là 1 số chính phương
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
Giả sử 2n - 1 là số chính phương => 2n - 1 có dạng 4k hoặc 4k + 1
+) Nếu 2n - 1 có dạng 4k => 2n có dạng 4k + 3. Vì 2n chia hết cho 2 mà 4k + 3 không chia hết cho 2 => mâu thuẫn => loại
+) Nếu 2n - 1 có dạng 4k + 1 => 2n có dạng 4k + 2. Vì n là số tự nhiên lớn hơn 1 => 2n luôn chia hết cho 4 mà 4k + 2 không chia hết cho 4 => mâu thuẫn => loại
Vậy 2n - 1 không phải số chính phương
Do n là số tự nhiên > 1 => 2n luôn chia hết cho 4
=> 2n - 1 chia 4 dư 3, không là số chính phương
Mk chưa hs chứng minh = phản chứng, đây là cách lp 6, hơi ngắn
Gọi 4 số tự nhiên liên tiếp là a ; a + 1 ; a + 2 ; a + 3 (a thuộc N)
n(n + 1)(n + 2)(n + 3) + 1 = n(n + 3)(n + 1)(n + 2) = \(\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt A = \(n^2+3n\)\(\)thì
A(A + 2) + 1= \(A^2+2A+1\)=\(\left(t+1\right)^2\)
Vậy tích 4 số tự nhiên liên tiếp cộng 1 là số chín h phương
Gỉa sử có 1 số chính phương lớn hơn 0 là a, sao cho a2+1=b2
=>a2 và b2 là 2 số liên tiếp.
=>a và b là 2 số liên tiếp.
=>b=a+1
=>a2+1=(a+1)2
=>a2+1=a.(a+1)+a+1
=>a2+1=a2+a+a+1
=>a2+1=(a2+2)+2a
=>0=2a
=>a=0
mà a là số tự nhiên lớn hơn 0=>a khác 0.
=>vô lí
=>Số chính phương lớn hơn 0 cộng thêm 1 thì không phải là số chính phương.
=>ĐPCM