Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 9.
a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)
b) Áp dụng BĐT Cauchy cho 2 số không âm:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
Câu 10.
a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
c) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
d) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
I don't now
...............
.................
1, bài 384 sách nâng cao lớp 8 tập 2 trang 52
2, câu b bài 388 snc lớp 8
Do \(a^2+b^2+c^2=5\Rightarrow a^2,b^2,c^2\le5\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le\sqrt{5}\)
\(\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le2\)
\(\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\in\left\{0;1;2\right\}\)
Mà \(a+b+c=3\) và \(a^2+b^2+c^2=5=0^2+1^2+2^2\)
\(\text{nên }\left(a,b,c\right)\in\left\{\left(0;1;2\right);\left(0;2;1\right);\left(1;0;2\right);\left(1;2;0\right);\left(2;1;0\right);\left(2;0;1\right)\right\}\)
Với mỗi cặp như vậy, \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)=\left(0+2\right)\left(1^2+2\right)\left(2^2+2\right)=36=6^2\)
là số chính phương.
\(b, 8(a^3+b^3+c^3)≥(a+b)^3 + (b+c)^3 + (c+a)^3 \) với \(a,b,c>0\)
Ta biến đổi thành: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)
Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3\)
\(=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)
\(=3\left(a+b\right)\left(a-b\right)^2\ge0\)
Tương tự như trên với: \(4\left(b^3+c^3\right)-\left(b+c\right)^3\) và \(4\left(c^3+a^3\right)-\left(c+a\right)^3\)
\(\RightarrowĐpcm\)(Viết cái đề ra ý)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)