Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
Mà \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{99}{100}\)
a)\(H=1+5+...+5^{120}\)
\(=\left(1+5\right)+...+\left(5^{119}+5^{120}\right)\)
\(=1\cdot\left(1+5\right)+...+5^{119}\left(1+5\right)\)
\(=1\cdot6+...+5^{119}\cdot6\)
\(=6\cdot\left(1+...+5^{119}\right)⋮6\left(DPCM\right)\)
b)\(H=1+5+...+5^{120}\)
\(=\left(1+5+5^2\right)+...+\left(5^{118}+5^{119}+5^{120}\right)\)
\(=1\left(1+5+5^2\right)+...+5^{118}\left(1+5+5^2\right)\)
\(=1\cdot31+...+5^{118}\cdot31\)
\(=31\cdot\left(1+...+5^{118}\right)⋮31\left(DPCM\right)\)
\(A,\frac{4^9.36+64}{16^4.100}=\frac{\left(2^2\right)^9.2^2.3^2+2^6}{\left(2^4\right)^4.2^2.5^2}=\frac{2^{20}.3^2+2^6}{2^{18}.5^2}=\frac{2^6\left(2^{14}.3^2+1\right)}{2^{18}.5^2}=\frac{2^{14}.3^2+1}{2^{12}.5^2}=\frac{147457}{102400}\)
B,
\(\frac{11.3^{22}.3-9^{13}}{\left(2.3^{14}\right)^2}=\frac{11.3^{22}-\left(3^2\right)^{13}}{2^2.3^{28}}=\frac{11.3^{22}-3^{26}}{2^2.3^{28}}=\frac{3^{22}\left(11.1-3^4\right)}{2^2.3^{28}}=\frac{11-81}{2^2.3^6}=-\frac{70}{2916}=-\frac{35}{1456}\)
c,
\(\frac{45^3.20^4.18}{180^5}=\frac{\left(3^2.5\right)^3.\left(5.2^2\right)^4.2.3^2}{\left(2^2.3^2.5\right)^5}=\frac{3^6.5^3.5^4.2^8.2.3^2}{2^{10}.3^{10}.5^5}=\frac{3^8.2^{10}.5^7}{2^{10}.3^{10}.5^5}=\frac{5^2}{3^2}=\frac{25}{9}\)
\(\frac{4^9\cdot36+64}{16^4\cdot100}=\frac{2^6\cdot147457}{2^{16}\cdot100}=\frac{147457}{2^{10}\cdot100}\)
\(\frac{11\cdot3^{22}\cdot3-9^{13}}{2^2\cdot3^{28}}=\frac{3^{23}\left(11-3^3\right)}{2^2\cdot3^{28}}=\frac{-16\cdot3^{23}}{2^2\cdot3^{28}}=\frac{-4}{243}\)
\(\frac{45^3\cdot20^4\cdot18}{180^5}=\frac{3^8\cdot2^9\cdot5^7}{2^{10}\cdot3^{10}\cdot5^5}=\frac{25}{18}\)
Ta có :
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(...\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\\
\Rightarrow A< 2\)