K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: x^2+10x+100

=x^2+10x+25+75=(x+5)^2+75>0 với mọi x

b: -x^2+4x-100

=-(x^2-4x+100)

=-(x^2-4x+4+96)

=-(x-2)^2-96<0 với mọi x

c: x^2-5x+6

=x^2-5x+25/4-1/4

=(x-5/2)^2-1/4 chưa chắc lớn hơn 0 đâu nha bạn

19 tháng 7 2017

E=4x​2​+5x+5>0 với mọi x

=(4x​2 +4x+1)+4

=(2x+1)\(^2\)+4

Với mọi x thuộc R thì (2x+1)\(^2\)>=0

Suy ra(2x+1)\(^2\)+4>=4>0

Hay E>0 với mọi x thuộc R(đpcm)

F=5x2​-6x+7>0 với mọi x

=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)

=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)

Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0

Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0

Hay F >0 với mọi x(đpcm)

G=-x​2​​+5x -6<0 với mọi x​

=-(x​2​​-5x+6,25)+0,25

=-(x-2,5)2 +0,25

Với mọi x thuộc R thì -(x-2,5)2 <=0

Suy ra -(x-2,5)2 +0,25<0

Hay G<0 với mọi x (đpcm)

chúc bạn học tốt ạ

6 tháng 7 2021

b) 10x - x2 - 9y2 + 6y - 100 

= - (x2 - 10x + 25) - (9y2 - 6y + 1) -  74

= - (x - 5)2 - (3x - 1)2 - 74 \(\le-74< 0\)

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

16 tháng 8 2017

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

7 tháng 9 2016

a) Ta có: x+ 4x +5 = ( x2 + 4x + 4 ) +1 =  (x+2)2  + 1  >= 1 >0 với mọi x

b) Ta có : 4x- 4x +2 = ( 4x- 4x +1 ) + 1 = (2x+1) > 0 với mọi x

c) Ta có : x2 - 3x +4 = [x2 - 2.(3/2)x + (9/4) ]+ (7/4) = ( x - 3/2 )+ 7/4 >0 với mọi x 

mấy câu sau lm tương tự: sử dụng hằng đẳng thức tách thành dạng một bình phương cộng vs 1 số 

7 tháng 9 2016

a) x2 + 4x + 5 = x2 + 2 . 2x + 22 + 1 = (x + 2)2 + 1\(\ge\)1 > 0

b) 4x2 - 4x + 2 = (2x)2 - 2 . 2x + 1 + 1 = (2x - 1)2 + 1\(\ge\)1 > 0

c) x2 - 3x + 4 = x2 - 2 . 1,5x + 1,52 + 1,75 = (x - 1,5)2 + 1,75 \(\ge\)1,75  > 0

d) x2 - x + 1 = x2 + 2 . 0,5x + 0,52 + 0,75 = (x + 0,5)2 + 0,75\(\ge\)0,75  > 0

e) x2 - 5x + 7 = x2 - 2 . 2,5x + 2,52 + 0,75 = (x - 2,5)2 + 0,75\(\ge\)0,75  > 0

1 tháng 8 2018

3)

e)

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

1 tháng 8 2018

3)

b)-x^2+4x-5=-(x^2-4x+5)

=-(x^2-2.2x+2^2)-1

=-(x+2)^2-1

vì -(x+2) nhỏ hơn hoặc bằng 0 \(\forall x\)

=>-(x+2)^2-1<1 \(\forall\)x

12 tháng 8 2017

a, x^2 + xy + y^2 + 1 

= (x+y/4) ^2 + 3/4.y^2 + 1 >= 1 > 0

24 tháng 6 2017

a) x2 + x + 2
= (x2 + x + 1) + 1
= (x + 1)2 + 1 > 0

b) x2 - 4x + 10
= (x2 - 4x + 4) + 6
= (x - 2)2 + 6 > 0

c) x(x - 4) + 10
=  x2 - 4x + 10
= (x2 - 4x + 4) + 6
= (x - 2)2 + 6 > 0

d) x(2 - x) - 4
=  -x2 + 2x - 4
= -(x2 - 2x + 4)
= -[(x2 - 2x + 1) + 3]
= -[(x - 1)2 + 3] < 0

e) x2 - 5x + 2017
= (x2 - 5x + 25) + 2012
= (x - 5)2 + 2012 > 0

a)

\(x^2+xy+y^2+1=\left(x^2+2x\times\frac{y}{2}+\left(\frac{y}{2}\right)^2\right)+\frac{3y^2}{4}+1\)

\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge0+0+1=1\)

\(1>0\Rightarrow x^2+xy+y^2+1>0\)với mọi \(x\)\(y\)

b)

\(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\right]+y^2-6y+13\)

\(=\left(x+1-2y\right)^2+\left(y^2-2y\times3+9\right)+4\)

\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)

Ta có:\(\left(x+1-2y\right)^2\ge0\)với mọi \(x;y\in R\)

\(\left(y-3\right)^2\ge0\)với mọi \(x;y\in R\)

\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x;y\in R\)

\(\Rightarrow x^2+5y^2+2x-4xy-10y+14>0\)

c)

\(5x^2+10y^2-6xy-4x-2y+3=x^2+4x^2+y^2+9y^2-6xy-4x-2y+3\)

\(=\left[\left(2x\right)^2-2\times2x+1\right]+\left(y^2-2y+1\right)+\left[\left(3y\right)^2-2\times3y+x^2\right]+1\)

\(=\left(2x+1\right)^2+\left(y-1\right)^2+\left(3y-x\right)^2+1\)

Ta có \(\left(2x+1\right)^2\ge0\)với mọi  \(x\)

\(\left(y-1\right)^2\ge\)với mọi \(y\)

\(\left(3y-x\right)^2\ge0\)với mọi \(x;y\)

và \(1>0\)

\(\Rightarrow5x^2+10y^2-6xy-4x-2y+3>0\)

1 tháng 9 2017

a. \(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{4}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)(đpcm)

b. \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left[\left(x-2y\right)^2-2\left(x-2y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y-1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)(đpcm)

c.  tương tự ý b

Bài 2: 

a: =>(4x-1)2=0

=>4x-1=0

hay x=1/4

b: =>(x+4)(x-2)=0

=>x=-4 hoặc x=2

c: =>x2+2x+1+y2+2y+1=0

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2=0\)

=>x=-1và y=-1