Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) n+4 chia hết cho n
suy ra 4 chia hết cho n(vì n chia hết cho n)
suy ra n thuộc Ư(4) {1;2;4}
Vậy n {1;2;4}
b) 3n+7 chia hết cho n
suy ra 7 chia hết cho n(vì 3n chia hết cho n)
suy ra n thuộc Ư(7) {1;7}
Vậy n {1;7}
c) 27-5n chia hết cho n
suy ra 27 chia hết cho n(vì 5n chia hết cho n)
suy ra n thuộc Ư(27) {1;3;9;27}
Vậy n {1;3;9;27}
d) n+6 chia hết cho n+2
suy ra (n+2)+4 chia hết cho n+2
suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)
suy ra n+2 thuộc Ư(4) {1;2;4}
n+2 bằng 1 (loại)
n+2 bằng 2 suy ra n bằng 0
n+2 bằng 4 suy ra n bằng 2
Vậy n {0;2}
e) 2n+3 chia hết cho n-2
suy ra 2(n-2)+7 chia hết cho n-2
suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)
suy ra n-2 thuộc Ư(7) {1;7}
n-2 bằng 1 suy ra n bằng 3
n-2 bằng 7 suy ra n bằng 9
Vậy n {3;9}
bài này dễ
3n+3+3n+1+2n+3+2n+2
=3n.33+3n.3+2n.23+2n.22
=3n.(33+3)+2n.(23+22)
=3n.(27+3)+2n.(8+4)
=3n.30+2n.12
vì 3n.30 chia hết cho 6
2n.12 chia hết cho 6
=> 3n+3+3n+1+2n+3+2n+2 chia hết cho 6
Cho xin phép sửa đề lại :
CMR : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}⋮6\)
Ta có : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}=3^n\cdot3^3+2^n\cdot2+3^n\cdot3+2^n\cdot2^2\)
\(=3^n\cdot27+2^n\cdot2+3^n\cdot3+2^n\cdot4\)
\(=3^n\left(27+3\right)+2^n\left(2+4\right)\)
\(=3^n\cdot30+2^n\cdot6=6\left(5\cdot3^n+2^n\right)⋮6\)(đpcm)
Còn nếu có hai phần 2n+2 thì nó chia hết cho 2 chứ không phải chia hết cho 6