Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đúng : Chứng minh : \(\frac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}=\frac{x^2+2x+2}{x-1}\)
Điều kiện : \(x\ne1\)
Phân tích : \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
\(x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1=x^3+2x-2x^2-\left(x^2-2x+1\right)-1\)
\(=x^3-3x^2+4x-2=\left(x^3-3x^2+3x-1\right)+\left(x-1\right)=\left(x-1\right)^3+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+2\right)\)
Suy ra : \(\frac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}=\frac{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}{\left(x-1\right)\left(x^2-2x+2\right)}=\frac{x^2+2x+2}{x-1}\)
\(\left(2x-1\right)\left(x-5\right)-x^2+10x-25=0\)
\(\left(2x-1\right)\left(x-5\right)-\left(x^2-10x+25\right)=0\)
\(\left(2x-1\right)\left(x-5\right)-\left(x-5\right)^2=0\)
\(\left(x-5\right)\left(2x-1-x+5\right)=0\)
\(\left(x-5\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
\(\left(5n-3\right)^2-9=\left(5n-3\right)^2-3^2=\left(5n-3-3\right)\left(5n-3+3\right)=5n\left(5n-6\right)\)
Ta có: \(5⋮5\)
\(\Rightarrow5n\left(5n-6\right)⋮5\forall n\in Z\)
\(\Rightarrow\left(5n-3\right)^2-9⋮5\forall n\in Z\)
đpcm
x2-2x+1 = (x-1)2
x10-10x + 9=x10-9x-x+9=x(x9-1)-9(x-1)
= x(x-1)(...)-9(x-1)
=(x-1)[x(...)-9]
Đoạn ... bạn tự khai triển nha chứ mình đánh máy mỏi lắm :v bạn nhân vô hết rồi tách cái -9 ra làm 9 cái -1 rồi cầm hằng đẳng thức như mình làm của cái x9-1 là sẽ suy ra được thêm một cái nhân tử x-1 như vậy bài toán được chứng minh.
trả lời rõ đi
mh k bt khai triển tiếp