Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
. . . . . . . . . . . p. . . . . . .m + n
Thỏa mãn ————– = ———– <=> p² = ( m – 1 )( m + n )
. . . . . . . . . .m – 1. . . . . . .p
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p²
Chú ý : m – 1< m + n ( * )
Do p là số nguyên tố nên p² chỉ có các ước nguyên dương là 1, p và p² ( ** )
Từ ( * ) và ( ** ) ta có m – 1 = 1 và m + n = p². Khi đó m = 2 và tất nhiên 2 + n = p² .
Theo bài ra, ta có: \(n>2\Rightarrow2^n+1>2^2+1=5\)
\(n>2\Rightarrow2^n-1>2^2-1=4\)
Ta có: \(\left(2^n+1\right)+\left(2^n-1\right)=2.2^n=2^{n+1}⋮2\)
Mà \(\left(2^n+1;2\right)=1\Rightarrow2^{n-1}⋮2\)
Lại có \(2^n-1>4\)
\(\Rightarrow2^n-1\)là hợp số
=> đpcm
Ta có: 2^n+1;2^n;2^n-1 là 3 số tự nhiên liên tiếp
=>một trong 3 số trên chia hết cho 3
mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3
mặt khác: 2^n ko chia hết cho 3
=>2^n-1 chia hết cho 3
2n>22=4>3 (vì n>2)
=>2n=3k+1;3k+2
xét 2n=3k+2 =>2n+1=3k+3=3(k+1) chia hết cho 3
=>2n+1 là hợp số (trái giả thuyết)
=>2n=3k+1
=>2n-1=3k+1-1=3k chia hết cho 3
=>2n-1 là hợp số
=>đpcm
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America