K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

a) \(n\left(n+3\right)-\left(n-1\right)\left(n+2\right)\)

\(=n^2+3n-n^2-n+2\)

\(=2n+2=2\left(n+1\right)\) chỉ có thể CM luôn chia hết cho 2 với mọi n nguyên thôi nhé

b) \(\left(n+2\right)\left(n^2-3n+1\right)-n\left(n^2-n\right)+3\)

\(=n^3-n^2-5n+2-n^3+n^2+3\)

\(=-5n+5=5\left(1-n\right)\) chia hết cho 5 với mọi n nguyên

25 tháng 8 2020

n( n + 3 ) - ( n - 1 )( n + 2 )

= n2 + 3n - ( n2 + n - 2 )

= n2 + 3n - n2 - n + 2

= 2n + 2 = 2( n + 1 ) chia hết cho 2 thôi -..- ( mà cấy ni còn tùy cơ :D )

( n + 2 )( n2 - 3n + 1 ) - n( n2 - n ) + 3

= n3 - n2 - 5n + 2 - n3 + n2 + 3

= -5n + 5 = -5( n - 1 ) chia hết cho 5 ( đpcm )

Bài 1: 

b: 

x=9 nên x+1=10

\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)

=1

c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+2^5+2^{10}\right)⋮31\)

18 tháng 9 2019

Ta có:

a) 8.2n + 2n + 1 = 4.2.2n + 2n + 1 = 4.2n + 1 + 2n + 1 = (4 + 1).2n + 1 = 5.2n + 1 \(⋮\)5

b) 3n + 3 - 2.3n + 2n + 5 - 7.2n = 3n.27 - 2.3n + 2n.32 - 7.2n = 3n(27 - 2) + 2n(32 - 7) = 3n .25 + 2n.25 = (3n + 2n).25 \(⋮\)25

31 tháng 10 2017

Bài 1:

a)3x2 - 3y2 - 12x +12y=3(x2-y2)-12(x-y)=3(x-y)(x+y)-12(x-y)=3(x-y)(x+y-4)

b) 4x3 + 4xy2 + 8x2y - 16x=4x(x-4)+4xy(y+2x)=4x(x-4+y2+2xy)

c) x4 - 5x2 + 4=x4-x2-4x2+4=x2(x2-1)-4(x2-1)=(x2-1)(x2-4)=(x-1)(x+1)(x-2)(x+2)

d) x3 - 2x2 + 6x - 5=x3-x2-(x2-6x+5)=x2(x-1)-(x-1)(x-5)=(x-1)(x2-x+5)

e) x2 - 4x +3=x2-x-3x+3=x(x-1)-3(x-1)=(x-1)(x-3)

f ) 2x2 + 3x - 5=2x2-2+3x-3=2(x2-1)+3(x-1)=2(x-1)(x+1)+3(x-1)=(x-1)(2x+1)

19 tháng 4 2016

vì 3n^2 và 3 chia hết cho 3 nên xét n^3 + 5n = n(n^2 + 5)

nếu n chia hết cho 3 thì ....

nếu n không chia hết cho 3 thì n^2 chia 3 dư 1 suy ra n^2 + 5 chia hết cho 3

28 tháng 4 2016

ta có n là số nguyên dương => n là số tự nhiên khác 0

A = n3 + 3n2 + 5n +3

   = (n3 - n) + 3(n2 +2n +1)

   = n(n - 1)(n + 1) + 3(n2 + 2n +1)

ta thấy n(n-1)(n+1) là 3 số tự nhiên liên tiếp

mà tích 3 số tự nhiên liên tiếp thì chia hết cho 3 

=> n(n-1)(n+1) chia hết cho 3

mặc khác 3(n2 + 2n +1) luôn chia hết cho 3

=> n(n-1)(n+1) + 3(n+ 2n +1) chia hết cho 3 với mọi n nguyên dương

=> n3 + 3n2 + 5n +3 luôn chia hết cho 3 với mọi n nguyên dương

19 tháng 6 2015

(3n.5) là (3n-5) phải không

30 tháng 6 2017

bạn viết sai đề kìa