K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

A=1+7+72+73+...+719

= (1+7+72+73)+(74+75+76+77)+...+(7196+7197+7198+7199)

= (1+7+49+343)+74.(1+7+72+73)+...+7196.(1+7+72+73)

= 400+74.400+...+7196.400

= 400.(1+74+...+7196) chia hết cho 400

=> A chia hết cho 400 (đpcm)

18 tháng 10 2015

bạn gộp 4 số lại với nhau sau đó đặt chung

25 tháng 11 2016

\(7^1+7^2+...+7^{4n-1}+7^{4n}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(=7^1\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)

\(=7^1\cdot400+...+7^{4n-3}\cdot400\)

\(=400\left(7^1+...+7^{4n-3}\right)⋮400\)

17 tháng 1 2017

71 + 72 + 73 + 74 + ... + 74n - 1 + 74n

= (71 + 72 + 73 + 74) + (75 + 76 + 77 + 78) + ... + (74n - 3 + 74n - 2 + 74n - 1 + 74n)

= 71 . (1 + 7 + 72 + 73) + 75 . (1 + 7 + 72 + 73) + ... + 74n - 3 . (1 + 7 + 72 + 73)

= 71 . 400 + 75 . 400 + ... + 74n - 3 . 400

= 400 . (71 + 75 + ... + 74n - 3)

Vì 400 \(⋮\)400 nên suy ra 400 . (71 + 75 + ... + 74n - 3) \(⋮\)400

Vậy ....

~.~

9 tháng 1 2018

Ta có :

A = 2 + 22 + ... + 22010

A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

A = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )

A = 2 . 3 + 23 . 3 + ... + 22009 . 3

A = 3 . ( 2 + 23 + ... + 22009 ) \(⋮\)3

A = 2 + 22 + ... + 22010

A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )

A = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 22008 . ( 1 + 2 + 22 )

A = 2 . 7 + 24 . 7 + ... + 22008 . 7

A = 7 . ( 2+ 24 + ... + 22008 ) \(⋮\)7

B = 3 + 32 + ... + 32010

B = ( 3 + 32 ) + ... + ( 32009 + 32010 ) 

Làm tương tự chứng minh được B \(⋮\)4

B = 3 + 32 + ... + 32010

B = ( 3 + 32 + 33 ) + ... + ( 32008 + 32009 + 32010 )

Làm tương tự chứng minh được B \(⋮\)13

a, \(A=2+2^2+...+2^{2010}\)

\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(\Leftrightarrow A=2.3+2^3.3+...+2^{99}.3\)

\(\Leftrightarrow A=3\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 

12 tháng 10 2016

ta thấy: 

các lũy thừa có tận cùng là 1 thì có chữ số tận cùng là 1 (dãy trên có 10 số hạng)

=>119+118+117+.....+11+1=......1+.......1+......1+....+11+1 (có 10 số hạng)

    =.............0

mà các số chữ số tận cùng là:0 thì chia hết cho 5

=> 119+118+117+.....+11+1 chia hết cho 5

monh mọi người ủng hộ cho mình

k nha

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .

5 tháng 12 2017

1/ A= 71+72+73+74+75+76\(⋮\)57

Ta có : 71+72+73+74+75+76= (71+72+73)+(74+75+76)

=7x(1+7+72)+74x(1+7+72)

=7x57+74x57

=57x(7+74)\(⋮\)57

4n+17

Vậy A \(⋮\)57

Phần 2 thiếu đề bài

3/ 4n+17\(⋮\)2n+3

=>4n+17-2x(2n+3)\(⋮\) 2n+3

=>4n+17-4n-6\(⋮\) 2n+3

=>11\(⋮\)2n+3

=>2n+3 \(\varepsilon\)Ư(11)

mà Ư(11) ={1;11}

Vì 2n+3 là số tự nhiên =>2n+3 =11

=>2n=11-3

=>2n=8

=>n=8 :2

=> n=4 

Vậy n=4 thì ...

4/ 9n+17 \(⋮\)3n+2

=>9n+17-3x(3n+2)\(⋮\)3n+2

=>9n+17-9n-6\(⋮\)3n+2

=>11\(⋮\)3n+2

=>3n+2 \(\varepsilon\)Ư(11)

mà Ư(11)={1;11}

Vì 3n+2 là số tự nhiên => 3n+2>2

=>3n+2 =11

=>3n=11-2

=>3n=9

=>n=9:3

=>n=3

Vậy n=3 thì ...