Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
A=\(\left(2^{2011}+2^{2012}\right)+\left(2^{2013}+2^{2014}\right)+\left(2^{2015}+2^{2016}\right)\)
A=\(2^{2011}\left(1+2\right)+2^{2013}\left(1+2\right)+2^{2015}\left(1+2\right)\)
A=\(2^{2011}\cdot3+2^{2013}\cdot3+2^{2015}\cdot3\)
A=\(3\left(2^{2011}+2^{2013}+2^{2015}\right)⋮3\)(1)
A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
A=\(\left(2^{2011}+2^{2012}+2^{2013}\right)+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
A=\(2^{2011}\left(1+2+2^2\right)+2^{2014}\left(1+2+2^2\right)\)
A=\(2^{2011}\cdot7+2^{2014}\cdot7\)
A=\(7\cdot\left(2^{2011}+2^{2014}\right)⋮7\)(2)
Từ (1) và (2)\(\Rightarrow A⋮3,7\)
Mà ƯCLN(3,7)=1
\(\Rightarrow A⋮3\cdot7=21\)
A=22011+22012+22013+22014+22015+22016
A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25
A=22011.(1+2+22+23+24+25)
A=22011.(1+2+4+8+16+32)
A=22011.63
A=22011.3.21 chia hết cho 21
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\)
Ta thấy:
\(\dfrac{1}{2^2}>0\)
\(\dfrac{1}{3^2}>0\)
\(\dfrac{1}{4^2}>0\)
...
\(\dfrac{1}{2016^2}>0\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}>2015\cdot0=0\\ \Leftrightarrow A>0\)
Mặt khác:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=\dfrac{1}{1}-\dfrac{1}{2} \)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{2016^2}< \dfrac{1}{2015\cdot2016}=\dfrac{1}{2015}-\dfrac{1}{2016}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\\ \Leftrightarrow A< 1-\dfrac{1}{2016}< 1\left(2\right)\)Từ (1) và (2) ta có: \(0< A< 1\)
Không có số tự nhiên nào nằm giữa 0 và 1, vậy A không phải là số tự nhiên
2A=2+2^2+....+2^2014+2^2015
A=1+2^2+....+2^2014
A=2^2015-1 <2^2015