Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 8888...8 + 2017 - 9
= 8(11...1) + 2017 - 9 (2017 chữ số 1)
Ta có : 111...1 có tổng các chữ số : 1 + 1 + ... + 1 = 2017
nên 8(111...1) chia hết cho 9 (vì 2017 chia hết cho 9)
\(2017⋮9\)
\(-9⋮9\)
\(\Rightarrow\) \(B⋮9\)
Ta có : +) 104 = 1000 chia hết cho 8 => 104.102013 chia hết cho 8 => 102017 chia hết cho 8
+) 8 chia hết cho 8
=> 10^2017 + 8 chia hết cho 8 (1)
Ta lại có : 10^2017 = 100...0 (có 2017 số 0 ) => 10000...0 + 8 = 1000...08 chia hết cho 9 => 10^2017 + 8 chia hết cho 9 (2)
Từ (1) (2) => 10^2017 + 8 chia hết cho 72
a) - Xét trường hợp chia hết cho 2
+ Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.
- Xét trường hợp chia hết cho 3.
+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
Vậy n.(n+1).(2n+1) chia hết cho 2.
Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)
b) 10^9 + 2 = 100.....02.
Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)
c) 10^10 - 1 = 99...99
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
d) 10^8 - 1 = 99...9
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
E) 10^8 + 8 = 10...08
Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)
a) Ta có: \(10^{2017}-1=100...0\)(2017 chữ số 0) - 1 = 99...9 (2017 chữ số 9)
Do \(99...99⋮9\Rightarrow10^{2017}-1⋮9\). Mà số chia hết cho 9 thì chia hết cho 3.
b) Ta có: \(10^{2020}+8=100...0\)(2020 chữ số 0) +8
Ta thấy tổng của số trên là \(1+0+0+...+0+8=9⋮9\Rightarrow10^{2020}+8⋮9\) mà số chia hết cho 9 thì chia hết cho 3.
c) Ta có: \(10^{2016}+8=10...0\)(2016 chữ số 0) + 8= \(10...008\)
Tổng của số trên là 9 nên số trên chia hết cho 9.
Ta lại có 3 chữ số tận cùng của sô trên chia hết cho 8 => số trên chia hết cho 8
=> Số trên chia hết cho 8.9=72
Ta có : \(10^{2017}+8=10......10+8=10...8.\)
\(\Rightarrow1+0+...+8=9⋮9\)
\(\Rightarrow10^{2017}+8⋮9\)
10^2017+8 = 1+ 0+0+0+..+0( 2017 số 0)
=1+8=9 chia hết cho 9