Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko sai đâu bn ơi
nhiều người đề cx như vậy mà
bn lấy chứng cứ đâu mà bảo sai
có khi bn lm sai nên mới bảo đề sai ý
bn thử lm cho mk xem cái
Bài 272 , 273 Sách nâng cao và phát triển toán 8 tập 1 trang 71, bài tương tự đấy
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)+\frac{3}{4}\ge\frac{3}{4}>0\)( đpcm )
\(2004^2-16\)
\(=\left(2004-4\right)\left(2004+4\right)\)
\(=2000.2008\)
\(=4016000\)
\(99^3+1+3\left(99^2+99\right)=99^3+3.1.99^2+3.1^2.99+1^3=\left(99+1\right)^3=100^3=1000000.\)
1,
\(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=2.0=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
<=> x - y = 0
y - z = 0
z - x =0
<=> x=y
y=z
z=x
<=> x=y=z
1)VD:\(X=Y=Z\Leftrightarrow XY+YZ+ZX=X^2+Y^2+Z^2\)
\(\Leftrightarrow X^2+Y^2+Z^2=XY+YZ+ZX\left(1\right)\)
VD:\(X^2+Y^2+Z^2=XY+YZ+ZX\Leftrightarrow2X^2+2Y^2+2Z^2=2XY+2YZ+2ZX\)
\(\Leftrightarrow2X^2+2Y^2+2Z^2-2XY-2YZ-2ZX=0\)
\(\Leftrightarrow\left(X-Y\right)^2+\left(Y-Z\right)^2+\left(Z-X\right)^2=0\left(HĐT\right)\)
\(\Rightarrow X=Y=Z\left(2\right)\)
\(1\&2\Rightarrow X^2+Y^2+Z^2=XY+YZ+ZX\)
\(\Leftrightarrow X=Y=Z\)
2)\(\Rightarrow A+B+C\Rightarrow X=-\left(Y+Z\right)\Rightarrow X^2=\left(Y+Z\right)^2\)
\(\Leftrightarrow X^2=Y^2+2YZ+Z^2\)
\(\Leftrightarrow X^2-Y^2-Z^2=2YZ\)
\(\Leftrightarrow\left(X^2-Y^2-Z^2\right)^2=4Y^2Z^2\)
\(\Leftrightarrow X^4+Y^4+Z^4=2X^2Y^2+2Y^2Z^2+2Z^2X^2\)
\(\Leftrightarrow2\left(X^4+Y^4+Z^2\right)=\left(X^2+Y^2+Z^2\right)^2=A^4\)
\(\Rightarrow X^4+Y^4+Z^4=\frac{A^4}{2}\)
Đâu có đúng đâu bạn???
Ta có :
x99 + x88 + x77 + ..... + x11 + 1
= (x99 + x88 + x77 + ..... + x11) + 1
= [(x9)11 + (x8)11 + (x7)11 + .... + x11 ]+ 1
Xét từng giá trị trong ngoặc vuông , ta thấy
(x9)11 chia hết cho x9
(x8)11 chia hết cho x8
.........
x11 chia hết cho x
1 chia hết cho 1
=> x99 + x88 + x77 + ..... + x11 + 1 chia hết cho x9 + x8 + x7 + ....... + x + 1