K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

Xét : x^4-4x+4

= (x^4-2x^2+1)+(2x^2-4x+2)+1

= (x^2-1)^2+2.(x^2-2x+1)+1

= (x-1)^2.(x+1)^2+2.(x-1)^2+1

= (x-1)^2.[(x+1)^2+2]+1

Vì (x-1)^2 > = 0

     (x+1)^2 > = 0 => (x+1)^2+2 > 0

=> (x-1)^2.[(x+1)^2+2] > = 0

=> x^4-4x+4 = (x-1)^2.[(x+1)^2+2]+1 > 0 với mọi x

Tk mk nha

8 tháng 2 2018

Ta có x4-4x+4= (x4-2x2+1)+(2x2-4x+2)+1

= (x2-1)2+2(x2-2x+1)+1

= (x2-1)2+2(x-1)2+1

Nhận thấy (x2-1)2 \(\ge0\forall x\); 2(x-1)2 \(\ge0\forall x\)nên 

(x2-1)2+2(x-1)2+1 >0 với mọi x

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

2 tháng 10 2019

Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!

19 tháng 7 2017

E=4x​2​+5x+5>0 với mọi x

=(4x​2 +4x+1)+4

=(2x+1)\(^2\)+4

Với mọi x thuộc R thì (2x+1)\(^2\)>=0

Suy ra(2x+1)\(^2\)+4>=4>0

Hay E>0 với mọi x thuộc R(đpcm)

F=5x2​-6x+7>0 với mọi x

=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)

=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)

Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0

Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0

Hay F >0 với mọi x(đpcm)

G=-x​2​​+5x -6<0 với mọi x​

=-(x​2​​-5x+6,25)+0,25

=-(x-2,5)2 +0,25

Với mọi x thuộc R thì -(x-2,5)2 <=0

Suy ra -(x-2,5)2 +0,25<0

Hay G<0 với mọi x (đpcm)

chúc bạn học tốt ạ

3 tháng 6 2018

:\(x^4-4x+3=\left(x^4-x^3\right)+\left(x^3-x^2\right)+\left(x^2-x\right)-\left(3x-3\right)\)

                                  \(=x^3\left(x-1\right)+x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)\)

                                \(=\left(x^3+x^2+x-3\right)\left(x-1\right)\)

   \(=\left(x^2+2x+3\right)\left(x-1\right)^2\)(cái này bạn phân tích vế \(x^3+x^2+x-3=\left(x^2+2x+3\right)\left(x-1\right)\)là được

Ta có:\(\left(x-1\right)^2\ge0\)(luôn đúng).Dấu"="<=>x=1(1)

lại có \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2>0\)(2)

nhân vế (1) và (2) \(\Rightarrowđpcm\)

 Dấu"="<=>x=1

Xong rồi đấy,bạn k cho mình nhé

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

5 tháng 5 2017

2x^2+4x+2+1>0

2(x+1)^2+1>0 (đúng) 

suy ra đpcm 

5 tháng 5 2017

\(2x^2+4x+3\)

\(=2\left(x^2+2x+\frac{3}{2}\right)\)

\(=2\left(x^2+2x+1^2-1^2+\frac{3}{2}\right)\)

\(=2\left[\left(x+1\right)^2+\frac{1}{2}\right]\)

\(=2\left(x+1\right)^2+1>0\forall x\)

23 tháng 7 2019

a,2x2+8x+20=2(x2+4x)+20

=2(x2+4x+4)+20-4.2

=2(x+2)2+12

Ta có : 2(x+2)2 \(\ge0với\forall x\)

12 > 0

\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)

\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x

b,x4-3x2+5

=(x4-3x2)+5

=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)

=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)

Có : (x2-3/2)2\(\ge0với\forall x\)

\(\frac{11}{4}\)>0

\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)