K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
19 tháng 9 2020
a)
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | \(\sqrt{22}\)(loại | \(2\sqrt{7}\)(loại) | \(\sqrt{46}\)(loại) | 10(thoả mãn) | \(\sqrt{262}\) |
\(\Rightarrow\left(x,y\right)=\left(4;10\right)\)
HT
0
PT
1
17 tháng 7 2016
Đặt \(x=a+\frac{1}{3}\) ; \(y=b+\frac{1}{3}\) ; \(z=c+\frac{1}{3}\)
\(\Rightarrow x+y+z=\left(a+b+c\right)+1=1\Rightarrow a+b+c=0\)
Ta có : \(x^2+y^2+z^2=\left(a+\frac{1}{3}\right)^2+\left(b+\frac{1}{3}\right)^2+\left(c+\frac{1}{3}\right)^2=\left(a^2+b^2+c^2\right)+\frac{2}{3}\left(a+b+c\right)+\frac{1}{3}\)
\(=a^2+b^2+c^2+\frac{1}{3}\ge\frac{1}{3}\)
Vậy \(x^2+y^2+z^2\ge\frac{1}{3}\)
HT
0
Tham khảo: https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_l%E1%BB%9Bn_Fermat