K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Bạn hãy tách x^2-x+2 . và đưa nó về hàng đẳng thức . từ đó đối chiếu thì ta thấy được nó vô nghiệm

23 tháng 4 2017

\(x^2-x+2=x^2-\frac{1}{2}\cdot x\cdot2+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

vậy x2-x+2 không có nghiệm

Ta có: - x2 - 1 = 0

           -x2      = 1

           -1        = x2

             x2        =  -1

vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm

K CHO MIK NHA

6 tháng 5 2018

Đặt \(f\left(x\right)=-x^2-1=-\left(x^2+1\right)\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2+1>0\)với mọi giá trị của x

=> \(-\left(x^2+1\right)< 0\)với mọi giá trị của x

Vậy \(f\left(x\right)=-x^2-1\)vô nghiệm (đpcm)

Cách bạn làm ở trên đúng.

4 tháng 2 2016

 chưa hok

duyệt đi

4 tháng 2 2016

đợi năm sau em giải cho nghen! em mới lớp 6 thui à!hihi!^^

10 tháng 7 2020

\(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1=VP\left(đpcm\right)\)

\(P\left(x\right)=x^2+2x+4\)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot4=4-16=-12\)

\(\Delta< 0\)=> Đa thức vô nghiệm ( đpcm ) 

\(\left(x+1\right)^2=\left(x+1\right)\left(x+1\right)=x^2+x+x+1=x^2+2x+1\)

=>  \(x^2+2x+1=x^2+2x+1\left(\text{đ}pcm\right)\)

Ta có : \(P\left(x\right)=x^2+2x+4=0\)

\(\hept{\begin{cases}x^2\ge0\\2x\ge0\\4>0\end{cases}\Rightarrow vonghiem}\)

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

19 tháng 7 2017

3n + 3 + 3n + 1 + 2n + 3 + 2n + 2

= 3n.33 + 3n.3 + 2n.23 + 2n.22

= 3n.(27 + 3) + 2n.(8 + 4)

= 3n.30 + 2n.12

= 3n.5.6 + 2n.2.6

= 6.(3n.5 + 2n.2)  \(⋮\)  6

19 tháng 7 2017

Cảm ơn bạn kayasari nhiều nha !

11 tháng 5 2019

\(x^2-4x+5=\left(x-2\right)^2+1\ge0\)

Vậy M(x) không có nghiệm

11 tháng 5 2019

Vì \(x^2\ge0;4x\ge0\Rightarrow x^2-4x+5\ge0+5>0\)

\(\Rightarrow M\left(x\right)=x^2-4x+5\)không có nghiệm

23 tháng 6 2020

??

\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)

Dấu "=" khi x=0

Vậy đa thức đã cho không có nghiệm

23 tháng 6 2020

2x4 + x2 + 2

Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)

=> Đa thức vô nghiệm