K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

\(\left(x-3\right)\left(4x+5\right)+19=4x^2-12x+5x-15+19=4x^2-7x+4\)

\(=\left(2x\right)^2-2.\frac{7}{4}.2x+\frac{49}{16}+\frac{15}{16}=\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\)

Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}>0\Leftrightarrow\left(x-3\right)\left(4x+5\right)+19>0\)(đpcm)

6 tháng 7 2016

Bài 1:

a)-x^2+4x-5

=-(x2-4x+5)<0 với mọi x

=>-x^2+4x-5<0 với mọi x

b)x^4+3x^2+3

\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x

=>x^4+3x^2+3>0 với mọi x

c) bn xét từng th ra

Bài 2:

a)9x^2-6x-3=0

=>3(3x2-2x-1)=0

=>3x2-2x-1=0

=>3x2+x-3x-1=0

=>x(3x+1)-(3x+1)=0

=>(x-1)(3x+1)=0

b)x^3+9x^2+27x+19=0

=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)

  • Với x+1=0 =>x=-1
  • Với x2+8x+19 =>vô nghiệm

c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3

=>x3-25x-x3-8=3

=>-25x-8=3

=>-25x=1

=>x=-11/25

6 tháng 7 2016

mk sửa 1 tí ở dấu => thứ 2 từ dưới lên là

=>-25x=11

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

7 tháng 10 2017

\(x^2-x+1>0\)

Ta có:

\(x^2-x+1\)

=\(\left(x\right)^2-2\left(\frac{1}{2}\right)\left(x\right)+\left(\frac{1}{2}\right)^2-\frac{1}{4}+1\)

=\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)\(\forall x\in R\)

12 tháng 8 2017

a, x^2 + xy + y^2 + 1 

= (x+y/4) ^2 + 3/4.y^2 + 1 >= 1 > 0

29 tháng 8 2017

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

3 tháng 9 2018

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

24 tháng 6 2019

\(3x^2-4x+50\)

\(=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+\frac{146}{3}\)

\(=3\left(x-\frac{2}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}>0\) (đpcm)

26 tháng 6 2019

bạn làm rõ hơn tí đi được không

21 tháng 7 2017

a, \(x^2+xy+y^2+1=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)

\(\Rightarrow\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1\)

Vậy............

b, \(5x^2+10y^2-6xy-4x-2y+3\)

\(=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)

\(=x^2-3xy-3xy+9y^2+4x^2-2x-2x+1+y^2-y-y+1+1\)

\(=x\left(x-3y\right)-3y\left(x-3y\right)+2x\left(2x-1\right)-\left(2x-1\right)+y\left(y-1\right)-\left(y-1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2\ge0\)

\(\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy..............

Chúc bạn học tốt!!!

6 tháng 11 2019

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

24 tháng 8 2024

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

20 tháng 7 2016

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

20 tháng 7 2016

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.