K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

20 tháng 8 2018

\(x\left(x-1\right)-3x+3=0\)

<=> \(x\left(x-1\right)-3\left(x-1\right)=0\)

<=> \(\left(x-3\right)\left(x-1\right)=0\)

<=> \(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\x=1\end{cases}}\)

\(3x\left(x-2\right)+10-5x=0\)

<=> \(3x\left(x-2\right)+5\left(2-x\right)=0\)

<=> \(3x\left(x-2\right)-5\left(x-2\right)=0\)

<=> \(\left(3x-5\right)\left(x-2\right)=0\)

<=> \(\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

học tốt

16 tháng 7 2015

     n^2.(n+1) + 2n.(n+1)

=(n+1). (n^2 + 2n)

= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)

16 tháng 7 2015

n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.

=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.

Mà (2,3) = 1

=> n(n + 1)(n + 2) chia hết cho 6

=> n2.(n+1)+2n.(n+1) chia hết cho 6

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

25 tháng 6 2018

( n - 1 )( n + 1 ) - ( n - 7 )( n - 5 ) 

= ( n^2 + n - n - 1 ) - ( n^2 - 5n - 7n + 35 )

= n^2 - 1 - n^2 + 12n - 35

= -1 + 12n - 35

= 12n - 36

= 12( n - 3 ) \(⋮12\)

25 tháng 6 2018

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-\left(n^2-12n+35\right)=n^2-1-n^2+12n-35\)

\(=12n-36=12\left(n-3\right)\)\(⋮12\)(đpcm).

6 tháng 11 2019

Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath

1 tháng 7 2021

a) Ta có : n3 + 3n2 + 2n

= n(n2 + 3n + 2) 

= n(n + 1)(n + 2) \(⋮\)6 (tích 3 số nguyên liên tiếp) (đpcm)

b) A = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + .... + 295 + 296 + 297 + 298 + 299

= (1 + 2 + 22 + 23 + 24) + 25(1 + 2 + 22 + 23 + 24) + ... + 295(1 + 2 + 22 + 23 + 24)

= 31 + 25.31 + .. + 295.31

= 31(1 + 25 + ... + 295\(⋮31\)(đpcm) 

c) Ta có 49n + 77n - 29n - 1

= (49n - 1) + (77n - 29n

= (49 - 1)(49n - 1 - 49n - 2 + .... - 1) + (77 - 29)(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1) + 48(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) 

= 48(49n - 1 - 49n - 2 + .... - 1 + 77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) \(⋮\)48 (đpcm)