Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng a^n-b^n chia hết cho a-b với mọi n là số tự nhiên :a^n-1+b^n-1 chia hết cho a+b với mọi n là số tự nhiên
Đổi7^4n=2401^n nưa là ra 3 câu
a) 74n có tận cùng là 1 và số có tận cùng là 1 ( 74n) khi trừ đi 1 sẽ có tận cùng là 0 ( ..... 1 - 1 =........0 )nên chia hết cho 5
b) 34n có tận cùng là 1 , tận cùng là 1 cộng với 1 với 2 sẽ có tận cùng là 4 ( .......1 + 1+2 = ........4 ) nên không chia hết cho 5
Bạn đừng thắc mắc tại sao mìn biết 7 4n và 3 4n có tận cùng là 1 , cái này cô giáo dạy mìn rùi , kiểu dạng có công thức ấy mà ... Tóm lại , đừng thắc mắc nha
Tick nha , lần sau mìn giúp tiếp
Lời giải:
a. Ta có:
$7^4\equiv 1\pmod 5$
$\Rightarrow 7^{4n}\equiv 1^n\equiv 1\pmod 5$
$\Rightarrow 7^{4n}-1\equiv 0\pmod 5$
Hay $7^{4n}-1\vdots 5$
b.
$2^4\equiv 1\pmod 5$
$\Rightarrow 2^{4n+1}=2.2^{4n}\equiv 2.1^n\equiv 2\pmod 5$
$\Rightarrow 2^{4n+1}+3\equiv 2+3\equiv 5\equiv 0\pmod 5$
$\Rightarrow 2^{4n+1}+3\vdots 5$
Ta có : 74n - 1 = ( 74 )n - 1 = 2401n - 1 = ...1 - 1 = ...0
Vì \(0⋮5\)
=> ...0 \(⋮\)5
Vậy ...
Chúc mng học tốt ❀
Ta có :
Xét : \(7^{4n}-1\)
\(=\left(7^4\right)^n-1\)
\(=2401^n-1\)
Mà chữ số có tận cùng bằng 1 lũy thừa với bất kì số nào cũng có tận cùng bằng 1
\(=\left(......1\right)-1\)
\(=\left(.....0\right)\)
Mà số có tận cùn bằng 0 thì \(⋮5\)
\(\Rightarrow7^{4n}-1⋮5\)