\(a^4\text{+}b^4+c^4=2\left(ab\text{+}bc\text{+}ac\right)^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4=2\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(ab+bc+ac\right)\right]\)\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\)

6 tháng 6 2020

Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?

21 tháng 2 2018

Ta có: \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\)

\(\Rightarrow\left(a^2+b^2-c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2-b^2c^2-c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=\left(-2ab\right)^2-2a^2b^2+2b^2c^2+2c^2a^2=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(đpcm\right)\)

6 tháng 8 2016

a) a2 + b2 + c2 = ab + ac + bc

=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc

=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

=> (a - b)2 + (a - c)2 + (b - c)2 = 0 

Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0

=> a = b = c 

6 tháng 8 2016

b) a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

=> a3 + 3a2b + 3ab+ b3 + c3 - 3abc - 3a2b - 3ab2 = 0

=> (a + b)3 + c3 - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0 

=> a + b + c = 0

hoặc a2 + b2 + c2 = ab + bc + ac =>  a = b = c

20 tháng 6 2019

a) \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b=c\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

Từ đây ta có đpcm

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b\)