K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

Có nhiều cách CM nhưng sử dụng diện tích là cách nhanh nhất

M A B C H K D

Kẻ đường cao BD

Vì tam giác ABC cân tại A nên AB=AC

Ta có :

\(S_{ABM}+S_{AMC}=S_{ABC}\)

\(\Leftrightarrow\frac{1}{2}AB\cdot MH+\frac{1}{2}AC\cdot MK=\frac{1}{2}AC\cdot BD\)

\(\Leftrightarrow\frac{1}{2}AC\left(MH+MK\right)=\frac{1}{2}AC\cdot BD\)(Vì AB=AC)

\(\Leftrightarrow MH+MK=BD\)

Mà BD là đường cao của tam giác ABC cố định 

Hay BD cố định 

Suy ra MH+MK không đổi

Vậy........

Còn cách hai thì phức tạp hơn

16 tháng 9 2021

bc=db+dc

cho dù tổng khoảng cách từ d đến hai cạnh bên trên đáy bc cũng ko hay đổi vì tổng của db và dc luôn bằng bc, nó nằm trên bc

11 tháng 3 2018

Hỏi nhiều thế nhở!

18 tháng 8 2020

Ta co \(MP=MB.\sin\widehat{B},MQ=MC.\sin\widehat{C}\)

=> \(MP+MQ=\left(MB+MC\right).\sin\widehat{B}=BC.\sin\widehat{B}=const\)

a) Xét tứ giác ADME có 

AD//ME

DM//AE

Do đó: ADME là hình bình hành

b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)

nên ΔEMC cân tại E

Suy ra: EM=EC

Ta có: AE+EC=AC(E nằm giữa A và C)

mà AE=DM(AEMD là hình bình hành

mà EM=EC(cmt)

nên AC=MD+ME

2 tháng 10 2021

cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((