Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2016 = 2015 + 1
Áp dụng nguyên lí Đi rích lê, trong 2016 số tự nhiên bất kì luôn tìm được ít nhất 2 số chia chia cho 2015 có cùng số dư
Cho dù 2016 số có là số nào thì cũng đều có dạng \(n;n+1;n+2;...;n+2016\)
Và ta có \(n+2016-n=2015⋮2015\)
Như vậy trong 2016 số tự nhiên liên tiếp bất kì luôn tồn tại 2 số có hiệu chia hết cho 2015
Xét các số: 2016;20162016;...;2016...2016 (2018 số 2016)
Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
Giả sử số đó là 2016...2016 (m số 2016) và 2016...2016 (n số 2016) (m,n E N;m>n)
=>2016...2016-2016...2016 chia hết cho 2017
▲ ▲
m số 2016 n số 2016
=>2016...2016.1000n
▲
m-n số 2016
Mà (1000n;2017)=1
=>2016...2016 chia hết cho 2017 (m-n số 2016) (đpcm)
Xétcác số 2016;20162016;...;2016 ...2016(2018số 2016)
có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
giả sử số đó là 2016...2016 chia hết cho 2017 (n số 2016) (m,nEn;m>n)
=> 2016...2016-2016...2016 chia hết cho 2017
m số 2016 nsố 2016
=> 2016...2016.1000n
m-n số 2016
Mà (1000n;2017)=1
=>2016...2016 chia hết cho 2017 ( m - n số 2016) (dpcm)
gọi
\(b_1,b_2,..b_n\) là phép chia lấy phần dư của các \(a_1,a_2,...,a_n\) cho n
.Giả sử không có số nào chia hết cho n, thì các \(b_i\) đều là các số tự nhiện nằm trong khoảng \(1\le b_i\le n-1\)
do có n phần tử \(b_i\) mà chỉ có n-1 giá trị nên theo nguyên lí dirichlet tồn tại hai số \(b_i\) \(=b_j\)
Hay nói cách khác \(a_i\text{ và }a_j\text{ đồng dư mode n}\)
hay hiệu \(a_i-a_j\) chia hết cho n
vậy ta có điều phải chứng minh