Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.
Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.
Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000
=> 3b.(3a-b-1) chia hết cho 1000.
Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.
Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.
Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.
Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000
=> 3b.(3a-b-1) chia hết cho 1000.
Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.
Một số bất kì khi chia cho 5 có thể có 5 số dư : 0;1;2;3;4
6 số bất kì => luôn tồn tại ít nhất 2 số có cùng số dư
Giả sử a =5q+k và b =5p +k ;( 0</ k </4 )
=> a -b = 5q +k - 5p -k = 5(q-p) chia hết cho 5