Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.
b/
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
a.
b.
từ ý a ta thấy tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 3
mà trong 3 số tự nhiên liên tiếp chắc chắn có ít nhất 1 số chẵn do đó tích 3 số tự nhiên liên tiếp luôn chia hết cho 2
vậy tích 3 số tự nhiên liên tiếp chia hết cho 2 x 3 = 6
gọi 3 số tự nhiên liên tiếp lần lượt là x-1,x,x+1
Ta có: (x-1)x chia hết cho 2 (tích hai số tự nhiên liên tiếp)
=> (x-1)x(x+1) chia hết cho 2
(x-1)x(x+1) chia hết cho 3 ( tích ba số tự nhiên liên tiếp)
mà (2,3) = 1
=> (x-1)x(x+1) chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
TA CO DANG 3 STN LIEN TIEP 3K.(3K+1).(3K+2)
MA 3K CHIA HET CHO 3 SUY RA TICH DO CHIA HET CHO 3
NHA !MÌNH MỚI HỌC HÈ TOÀN NÀY THẦY GIẢI CHO MÌNH ĐÓ .ĐÚNG 100%
gọi tích của 3 số liên tiếp là
A= a. (a+1).(a+2) ( a thuộc N*)
giả sử a chia hết 3 suy ra A chia hết 3
Nếu a ko chia hết cho 3 thì có 2 khả năng ; 3n+1 hoặc 3n+2
với a=3n+1 suy ra a +2 =( 3n +1) +2=3n+3 chia hết cho 3 suy ra A chia hết 3 (1)
với a=3n+2 suy ra a +1 =3n+2+1 =3n+3 chia hết cho 3 suy ra A chia hết 3 (2)
Vậy với mọi A thuôc N thì A chia hết 3 ( điều đã được chứng minh)
Hai số tự nhiê liên tiếp có dạng a và a + 1
Tích hai số là a ( a+ 1 )
(+) với a chẵn a = 2k thay vào ta co
2 x k x (2k+1) luôn luôn chia hết cho 2
(+) với a lẻ a = 2k + 1 thay vào ta có
a(a+1) = ( 2k + 1 )(2k +1 + 1 ) = ( 2k + 1 )( 2k+ 2 ) = 2 ( k+ 1 )(2k+ 1) luôn luôn chia hết cho 2
Vì hai số lẻ liên tiếp luôn có 1 số chẵn => tích chẵn => chia hết cho 2
1: A) Số đó là: 102
B) Số đó là 108
2: A). Gọi 3 số đó là a; a + 1; a + 2
Ta có: a + a + 1 + a + 2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a + 3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
B) Mình chịu vì mình không biết làm. Xin lỗi bạn
~ Chúc bạn học tốt ~
1
a) 102
b ) 108
2
a) ví dụ
1+2+3=6'
4+5+6=15
6+7+8=21
b)
1x2x3=6
2 x 3 x 4 = 24
3 x 4 x 5 =60
nhớ k cho mình nha
ta có:12*13/6 =156/6 =26
15*16/6=240/6=40
17*18/6=306/6=51
14*15/6=210/6=35
v.v...
k mình nhé mình chưa được điểm nào