K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y}=\dfrac{u}{v}=\dfrac{x-u}{y-v}\)

\(\Rightarrow x\left(y-v\right)=y\left(x-u\right)\)

Mà x > y

\(\Rightarrow y-v< x-u\)

\(\Rightarrow x+v>y+u\left(đpcm\right)\)

Vậy...

5 tháng 6 2017

ta có:\(x>y>u>v\)

\(\Rightarrow x^2>y^2>u^2>v^2\)

giả sử x+v>y+u là đúng

\(\Rightarrow\left(x+v\right)^2>\left(y+u\right)^2\\ \Leftrightarrow x^2+v^2+2xv>y^2+u^2+2yu\\ \Leftrightarrow x^2-y^2+v^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow x^2-x^2+u^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow yu-xv=0\\ \Leftrightarrow yu=xv\\ \Rightarrow\dfrac{x}{y}=\dfrac{u}{v}\left(đúng\right)\)

do đó: \(x+v>y+u\) đúng.

9 tháng 11 2016

Giả sử \(x,y\in Q,x=\frac{a}{b},y=\frac{c}{d},a,b,c,d\in Z;b,d>0\)

a) Nếu \(x>y\), nghĩa là \(\frac{a}{b}>\frac{c}{d}\). Ta có:

\(ad-bc>0.\)\(b>0,d>0,bd>0\) nên

\(\frac{ad-bc}{b.d}>\frac{0}{b.d}=0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a}{b}-\frac{c}{d}>0,\)

tức là \(x-y>0\)

b) Ngược lại nếu \(x-y>0\), nghĩa là

\(\frac{a}{b}-\frac{c}{d}>0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a.d-b.c}{b.d}>\frac{0}{b.d}\\ \Rightarrow a.d-b.c>0\Rightarrow a.d>b.c\\ \Rightarrow\frac{a.d}{b.d}>\frac{b.c}{b,d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)

Tức là \(x>y\)