\(\sqrt{x}+\frac{1}{\sqrt{y}}=\sqrt{y}+\frac{1}{\sqrt{z}}=\sqrt{z}+\frac{1}{\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

\(\frac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\frac{\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2-y+\left(\sqrt{x}-\sqrt{z}\right)^2}{\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2-x+\left(\sqrt{y}-\sqrt{z}\right)^2}\)

\(=\frac{\left(\sqrt{x}+2\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)+\left(\sqrt{x}-\sqrt{z}\right)^2}{\left(2\sqrt{x}+\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)+\left(\sqrt{y}-\sqrt{z}\right)^2}\)

\(=\frac{\left(\sqrt{x}-\sqrt{z}\right)\left(2\sqrt{x}+2\sqrt{y}-2\sqrt{z}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(2\sqrt{x}+2\sqrt{y}-2\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)

20 tháng 8 2015

Đề bài thiếu giả thiết \(x,y,z\) không đồng thời bằng nhau. Ví dụ lấy \(x=y=z=2\) sẽ thỏa mãn giả thiết nhưng không suy ra được \(xyz=1\).

Đầu tiên ta thấy \(x,y,z>0.\)  Từ giả thiết ta có

\(\sqrt{x}+\frac{1}{\sqrt{y}}=\sqrt{y}+\frac{1}{\sqrt{z}}\to\sqrt{x}-\sqrt{y}=\frac{\sqrt{y}-\sqrt{z}}{\sqrt{yz}},\)
\(\sqrt{y}+\frac{1}{\sqrt{z}}=\sqrt{z}+\frac{1}{\sqrt{x}}\to\sqrt{y}-\sqrt{z}=\frac{\sqrt{z}-\sqrt{x}}{\sqrt{zx}},\)

\(\sqrt{z}+\frac{1}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{y}}\to\sqrt{z}-\sqrt{x}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}.\)

Nhân ba đẳng thức lại cho ta \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}{xyz}\).

Vì ba số không đồng thời bằng nhau nên ta suy ra các sẽ đôi một phân biệt (Vì nếu không chẳng hạn x=y thì y=z do đó cả ba số bằng nhau). Thành thử ta được \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)\ne0\)  nên \(\frac{1}{xyz}=1\to xyz=1.\)

12 tháng 8 2015

b1

lấy 3 cụm cộng lại 

trừ đi 1 cụm lập 

biến đổi 

thì ra

13 tháng 9 2016

1)Từ gt đề bài,ta có : (x2 - yz).y.(1 - xz) = (y2 - xz).x.(1 - yz)

=> 0 = VT - VP = (x2y - x3yz - y2z + xy2z2) - (xy2 - xy3z - x2z + x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)

        = (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)[xy + xz + yz - xyz(x + y + z)]

\(x\ne y\Rightarrow x-y\ne0\)nên xy + xz + yz - xyz(x + y + z) = 0 => xy + xz + yz = xyz(x + y + z)

\(xyz\ne0\)nên chia 2 vế cho xyz,ta có :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)= x + y + z (đpcm)

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

15 tháng 9 2016

Từ: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)
\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{ac}+2\sqrt{bc}=4\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1.\)vì a + b + c = 2
Từ đó: \(a+1=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right).\)
Tương tự: \(b+1=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)\(c+1=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right).\)
Từ đó: \(\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\frac{2}{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}.\)
Tương tự ta có: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}\)
\(=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}+\frac{\sqrt{c}}{\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\).
Ta có: VP = VT nên có đpcm.