\(n\left(n+1\right)\left(2n+1\right)⋮6\)với mọi \(n\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

\(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left[\left(n-1\right)+\left(n+2\right)\right]\)

\(=\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)⋮6\rightarrowđpcm\)

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

18 tháng 9 2016

Do n( n+1) là hai số tự nhiên liên tiếp ( n thuộc N) => n( n+1) chia hết cho 2 (1)

Do 2n chia hết cho 2 => 2n + 1 chia hết cho 3 ( 2)    ( đoạn này hơi tắt)

Từ (1) và (2) => n ( n+1) ( 2n+1) chia hết cho BCNN( 2, 3) hay n( n+1) ( 2n+1) chia hết cho 6( đpcm) 

k nha

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=\left(6n^2+30n+n+5\right)-\left(6n^2-3n+10n-5\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10⋮2\)

Câu 1:

A=a^3-13a=a^3-a-12a

=a(a-1)(a+1)-12a

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

mà 12a chia hết cho 6

nên A chia hết cho 6

6 tháng 4 2017

Vì n-1;n;n+1 là 3 số nguyên liên tiếp .

=>có 1 số chia hết cho 3.

=>(n-1)*n*(n+1) chia hết cho 3.

Vì n lẻ.

=>n-1 và n+1 chẵn.

Mà n-1 và n+1 là 2 số chẵn liên tiếp.

=>có 1 số chia hết cho 2 và 1 số chia hết cho 4.

=>(n-1)*(n+1) chia hết cho 2*4=8.

=>(n-1)*n*(n+1) chia hết cho 8(vì nEZ).

=>(n-1)*n*(n+1) chia hết cho 3 và 8.

Mà (3;8)=1.

=>(n-1)*n*(n+1) chia hết cho 3*8=24(đpcm).

k cho em nha.đây lại toán lớp 6 rùi

22 tháng 1 2015

Có vẻ như giữa (x2p - y2q)2n và (x3p - y3q)2n thiếu dấu + thì phải?

Ta có thể chứng minh như sau:

Với mọi n thuộc tập N*, ta có: k2n >= 0 với mọi k. (1)

-> (x1p - y1q)2n + ... + (xmp - ymq)2n luôn bằng 0 

-> x1p - y1q = 0, x2p - y2q = 0, ... và xmp - ymq = 0 (2)

Giả sử điều cần chứng minh là đúng: (x+ ... + xm) / (y+ ... + ym) q / p

-> p*(x+ ... + xm) = q*(y+ ... + ym)

-> x1p + ... + xmp = y1q + ... + ymq

-> (x1p - y1q) + ... (xmp -  ymq) = 0 (3)

Theo (2), (3) luôn đúng -> Giả sử của ta là chính xác.

 

 

5 tháng 11 2019

sai cmnr ko nen lam theo