Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co
\(3^{n+2}-2^{n+4}+3^n+2^n=3^n.3^2-2^n.2^4+3^n+2^n=3^n.\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15=5.\left(3^n.2-2^n.3\right)=5.2.3.\left(3^{n-1}-2^{n-1}\right)=30.\left(3^{n-1}-2^{n-1}\right)\)
Vì 30 chia hêt cho 30 nên 30.(\(3^{n-1}-2^{n-1}\)) chia hêt cho 30
Hay \(3^{n+2}-2^{n+4}+3^n+2^n\) chia hêt cho 30
\(3^{n+2}-2^{n+4}+3^n+2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)\)
\(=\left(3^n.9+3^n\right)-\left(2^n.16-2^n\right)\)
\(=3^n.10-2^n.15\)
\(=3^{n-1}.30-2^{n-1}.30\)
\(=30\left(3^{n-1}-2^{n-1}\right)⋮30\left(đpcm\right)\)
A=9.3^n+3^n+2^n-16.2^n
.=10.3^n-3.5.2^n=10.3^n-3.10.2^(n-1)=30[3^(n-1)-2^(n-1)]
Giải:
Ta có:
\(3^{n+2}-2^{n+4}+3^n+2^n\)
\(=3^n.9-2^n.16+3^n+2^n\)
\(=3^n\left(9+1\right)-2^n\left(16-1\right)\)
\(=3^n.10+2^n.15\)
\(=3^{n-1}.3.10-2^{n-1}.2.15\)
\(=3^{n-1}.30-2^{n-1}.30\)
\(=30\left(3^{n-1}-2^{n-1}\right)\)
Mặt khác \(n\) là số nguyên dương nên \(n-1\) là số tự nhiên
\(\Rightarrow30\left(3^{n-1}-2^{n-1}\right)⋮30\)
Hay \(3^{n+2}-2^{n+4}+3^n+2^n⋮30\forall n\) nguyên dương (Đpcm)
Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)+ \(3^n-2^n\)= \(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
= \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)= \(3^n\times10-2^{n-1}\times10\)
= 10 \(\times\left(3^n+2^{n+1}\right)\)
chia hết cho 10
Bài 2 :
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)
= \(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)
chia het cho 100
Sai đề.
VD: n=2=> \(A=5^2\left(5^2+1\right)-6^2\left(3^2+2\right)=25.\left(25+1\right)-36.\left(9+2\right)=25.26-36.11=650-396254\)không chia hết cho 91
Phải sửa đề là chia hết cho 8 nha,mk có thử lại rồi: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n\left(n+4\right)-1\left(n+4\right)-n\left(n+1\right)+4\left(n+1\right)\)
\(=n^2+4n-n+4-n^2+n+4n+4\)
\(=\left(n^2-n^2\right)+\left(4n+4n\right)+\left(n-n\right)+\left(4+4\right)\)
\(=0+8n+0+8\)
\(=8n+8\)
\(=8\left(n+8\right)⋮8\rightarrowđpcm\)
thế này mới đúng nè đầu bài đúng đó không sai đâu
(n-1)(n+4)-(n-4)(n+1)
=n(n+4)+(-1)(n+4)-((n(n+1)+(-4)(n+1)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
=\(=n^2+4n-n-4-n^2-n+4n+4\)
=\(=\left(n^2-n^2\right)+\left(4n+4n-n-n\right)+\left(-4+4\right)\)=6n chia hết cho 6 với mọi n thuộc Z
3^n+2=3^n .3^2=9.3^2
2^n+2= 2^n. 2^2= 4.2^2
=>3^n+2- 2^n+2 +3^n- 2^n=9.3^n -4.2^n +3^n -2^n
=3^n.(9+1) -2^n.(4+1)=10.3^n -2^n.5
Vì:10.3^n chia hết cho 10 (mình ko bít viết dấu chia hết)
2^n chia hết cho 2; 5 chia hết cho5; 2,5 là số nguyên tố cùng nhau,n>0
=>2^n.5 chia hết cho 10
dạy mình viết dấu chia hết đi!!!!!!!!!!!!!!!!
Có:\(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)=\left(3^n.3^2-2^n.2^{^4}+3^n+2^n\right)=3^n\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15\)Vì 30 chia hết cho 10 nên \(3^n.10\) cũng chia hết cho 10
Vì 30 chia hết cho 15 nên \(2^n.15\) cũng chia hết cho 15
Từ 2 điều nêu trên ta suy ra: \(\left(3^n.10-2^n.30\right)\) chia hết cho 30
Vậy: \(\left(3^{n+2}-2^{n+4}+3^n+2^n\right)\)chia hết cho 30 (ĐPCM)