K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

Bạn vào câu hỏi tương tự nhé !!!

8 tháng 12 2015

hai cái đấy giống hệt nhau 

7 tháng 3 2020

Đấu đề bổ sung = 3 nhé

7 tháng 3 2020

Xíu mk giải cho

25 tháng 10 2017

Ta chứng minh bất đẳng thức phụ

\(\frac{1}{8x^2+1}\ge\frac{2}{x+1}-1\)

\(\Leftrightarrow4x^3-4x^2+x\ge0\)

\(\Leftrightarrow x\left(2x-1\right)^2\ge0\)(đúng)

Áp dụng vào bài toán ta được

\(\frac{1}{8a^2+1}+\frac{1}{8b^2+1}+\frac{1}{8c^2+1}\ge-1+\frac{2}{a+1}-1+\frac{2}{b+1}-1+\frac{2}{c+1}\)

\(=-3+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=-3+4=1\)

3 tháng 6 2020

Ta có: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

\(\Rightarrow3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=1\)

\(\Rightarrow\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)

Xét BĐT  \(\Sigma_{cyc}\frac{1}{8a^2+1}\ge1\Leftrightarrow3-\Sigma_{cyc}\frac{1}{8a^2+1}\le2\)

\(\Leftrightarrow\Sigma_{cyc}\frac{8a^2}{8a^2+1}\le2\Leftrightarrow\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le2\)

Xét BĐT phụ: \(\frac{4x^2}{8x^2+1}\le\frac{x}{x+1}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{x\left(2x-1\right)^2}{\left(x+1\right)\left(8x^2+1\right)}\)(đúng với mọi x thực dương)

Áp dụng, ta có: \(\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le\text{​​}\Sigma_{cyc}\frac{a}{a+1}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

15 tháng 2 2020

Đặt VT là K.

Ta có: \(6a^2+8ab+11b^2=\left(2a+3b\right)^2+2\left(a-b\right)^2\ge\left(2a+3b\right)^2\)

\(\Rightarrow\frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}\le\frac{a^2+3ab+b^2}{2a+3b}\)

Tiếp tục ta chứng minh: \(\frac{a^2+3ab+b^2}{2a+3b}\le\frac{3a+2b}{5}\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Tương tự ta có: \(\frac{b^2+3bc+c^2}{\sqrt{6b^2+8bc+11c^2}}\le\frac{3b+2c}{5}\);\(\frac{c^2+3ca+a^2}{\sqrt{6c^2+8ca+11a^2}}\le\frac{3c+2a}{5}\)

Cộng từng vế của các bđt trên, ta được:

\(M\le\frac{3b+2c}{5}+\frac{3a+3b}{5}+\frac{3c+2a}{5}=a+b+c\)

Lại có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\le a^2+b^2+c^2+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)

hay \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow a+b+c\le3\)

Vậy \(M\le3\)

Đẳng thức xảy ra khi a = b = c = 1

15 tháng 2 2020

VT là M nha, mà k hay M gì cx đc, cm đc ròi

4 tháng 8 2018

Câu này đã có người đăng rồi, bạn tìm lại sẽ thấy

16 tháng 12 2021

Anh ơi khó dữ v. Để em hỏi chị gô gồ

16 tháng 12 2021

May ra dc anh ạ