Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ab + ba = 10a + b + 10b + a = (10a + a) + (10b + b) = 11a + 11b = 11(a + b) chia hết cho 11
=> ab + ba chia hết cho 11.
b) abcd = 100 . ab + cd = (99 + 1) . ab + cd = 99 . ab + ab + cd
Vì 99 . ab chia hết cho 11 ; ab + cd chia hết cho 11.
=> abcd chia hết cho 11.
Xét:
+) abc # ab => 10ab +c # ab => c # ab . Mà c < ab =>c=0
+) ab0 # a0 => 10a0+b0 # a0 => b0 # a0 => b # a (1)
+) ab0 # ba => 100a+b0 # ba => 99a+ba # ba => 99a # ba => 99 # ba => ba thuộc {11;33;99} (thỏa mãn(1))
Khi đó abc thỏa mãn tất cả các gt đầu bài (kiểm tra lại) (đpcm)
ab + ba = [10a + b] + [10b + a] = 10a + b + 10b + a = 11a + 11b \(⋮\)11
Ta có:
abcdeg = ab x 10000 + cd x 100 + eg
= ab x 9999 + ab + cd x 99 + cd + eg
= (ab x 9999 + cd x 99) + (ab + cd + eg)
= 11 x (ab x 909 + cd x 9) + (ab + cd + eg)
Do 11 x (ab x 909 + cd x 9) chia hết cho 11; ab + cd + eg chia hết cho 11
=> abcdeg chia hết cho 11 (đpcm)
Ta có :
abcdeg = ab . 10000 + cd . 100 + eg
= ab . 9999 + ab + cd . 99 + cd + eg
= ( ab . 9999 + cd . 99 ) + ( ab + cd + eg )
= 11 ( ab . 909 + cd . 9 ) + ( ab + cd + eg )
Do 11 . ( ab . 909 + cd . 9 ) chia hết cho 11 ; ab + cd + eg chia hết cho 11
\(\Rightarrow\)abcdeg chia hết cho 11 ( đpcm )
Ta có: ab+ba=a.10+b+b.10+a
=> ab+ba=a.11+b.11
=> ab+ba=11.(a+b)
=> ĐPCM
Ta có: ab-ba=a.10+b-b.10+a
=> ab-ba=a.10-a+b.10-b
=> ab-ba=a.9-b.9
=> ab-ba= 9.(a-b)
=> ĐPCM
a) ab = 10a + b
ba = 10b + a
=>ab + ba = 11(a+b) chia het cho 11.
b)ab=10a+b
ba=10b+a
ab-ba=9a-9b=9(a-b)=> ab-ba chia hết cho 9
a) ab + ba chia hết cho 11
=> 10a + b + 10b + a chia hết cho 11
=> 11a + 11b chia hết cho 11
b) ab - ba chia hết cho 9
=> 10a + b - 10b + a chia hết cho 9
=> 9a + 9b chia hết cho 9
ab + ba = 10a+b+10b+a=11a+11b=11(a+b)
Vậy tổng trên chia hết cho 11