K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

xem lại câu a nhé bạn

30 tháng 9 2018

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=\left(n+1\right)n\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

vì tích của 3 số tự nhiên liên tiếp chia hết cho 6

Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)

11 tháng 11 2016

A = (x2+x-1)2-1 = ( x+ x -2 )( x+ x ) = x(x+1)( x2 -1 + x -1 ) = x.( x + 1 ).[ ( x ​- 1 ).( x + 1 ) + x - 1 ) 

= x.( x + 1 ).( x ​- 1 ).( x + 2 )      ( Tích 4 số liên tiếp )

Mà trong đó có tích 2 số chẵn liên tiếp <=> A chia hết cho 8

trong đó có tích 3 số  liên tiếp <=> A chia hết cho 3

 ( 3;8 ) = 1

=> A chia hết cho 8.3 = 24

8 tháng 8 2018

Nè, bài này mình chỉ làm được hai câu a,b thoi nha

a) Chứng minh: 432 + 43.17 chia hết cho 16

432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60

b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z

n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)

⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6

7 tháng 6 2017

Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)\left[n\left(n+2\right)\right]=n.\left(n+1\right).\left(n+2\right)\)

Vì tích 3 số nguyên liên tiếp luôn chia hết cho 6 nên đa thức trên luôn chia hết hco 6 với mọi số nguyên thuộc n

Theo đề bài ta có:

n2(n+1)+2n(n+1)= (n+1) (n2+2n)

= n(n+1) (n+2)

Vì ta nhận thấy n(n+1) là tích 2 số nguyên liên tiếp (1)

và n(n+1) (n+2) là tích 3 số nguyên liên tiếp (2)

Từ (1) và (2) suy ra:

n(n+1) (n+2) chia hết cho 6 với mọi số nguyên n