Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
M= 1+1/2^2+1/3^2+...+1/50^2
vì 1=1
1/2^2<1/1*2
1/3^2<1/2*3
.....
1/50^2<1/49*50
=> M< 1+1/1*2+1/2*3+...1/49*50
=> M< (1/1*1+1/1*2+1/2*3+...+1/49 *50)
=> M<( 1/1-1/1+1/1-1/2+...+1/49-1/50)
=> M< (1-1/50)
=> M< 49/50
ta có 49/50= 98/100 và 98/100<173/100=> M<173/100
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)
b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a)A=1+1/22+1/32+....+1/1002
<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2
b)B=1/22+1/32+...+1/20122
<1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012
1/2-1/2013=2011/4026<2011/2012<1
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(\Rightarrow S< 1+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...\frac{1}{49\cdot50}\right)\)
\(S< 1+\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(S< 1+\left(1-\frac{1}{50}\right)\)
Mà \(1-\frac{1}{50}< 1\Rightarrow1+\left(1-\frac{1}{50}\right)< 2\)( ĐPCM )
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\) (1)
Có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}< 1\) (2)
Từ (2) và (2) ta có thể kết luận: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=\frac{2}{2}+\frac{2}{2^2}+...+\frac{2}{2^{100}}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{99^2}\)
\(\Rightarrow2A-A=A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{99^2}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{100^2}\right)\)
\(\Rightarrow A=1-\frac{1}{100^2}< 1\)
TA THẤY : \(\frac{1}{2}=1-\frac{1}{2};\frac{1}{2^2}< \frac{1}{2}-\frac{1}{3};...;\frac{1}{2^{200}}< \frac{1}{200}-\frac{1}{201}\)
Vậy \(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{200}-\frac{1}{201}\)
\(\Rightarrow A< 1-\frac{1}{201}\Rightarrow A< 1\)
Rút gọn dãy tính thứ nhất :
1/1 + 1/( 2 + 3 + 4 + .... + 50 )2
= 1 + 1/12742
= 1 + 1/1623076
1 + 1/1623076 < 173/100