Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước chung của 16n+5 và 6n+2
=>(6n+2)-(16n+5) chia hết cho d
=>8(6n+2)-3(16n-5) chia hết cho d
=>48n+16-48n-15 chia hết cho d
=>1 chia hết cho d
=>d =-1 hoặc d=1
=>16n+5 và 6n+2 là 2 số nguyên tố cùng nhau
=> phân số đó là phân số tối giản
Gọi d là ƯCLN (16n+5; 6n+2) ( d thuộc N*)
\(\Rightarrow\hept{\begin{cases}16n+5⋮d\\6n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(16n+5\right)⋮d\\8\left(6n+2\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}48n+15⋮d\\48n+16⋮d\end{cases}}}\)
=> (48n+16)-(48n+15) chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N*
=> d=1
=> ƯCLN (16n+5; 6n+2)=1
=> đpcm
Gọi d là ƯC(16n + 5; 6n + 2)
=> \(\Rightarrow\hept{\begin{cases}16n+5⋮d\\6n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3\left(16n+5\right)⋮d\\8\left(6n+2\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}48n+15⋮d\\48n+16⋮d\end{cases}}}\)
=> ( 48n + 16 ) - ( 48n + 15 ) chia hết cho d
=> 48n + 16 - 48 - 15 chia hết cho d
=> ( 48n - 48n ) + ( 16 - 15 ) chia hết cho d
=> 0 + 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(16n + 5 ; 6n + 2) = 1
=> \(\frac{16n+5}{6n+2}\)tối giản ( đpcm )
gọi d là UCLN(6n+12;3n+5)
ta có:
[6n+12]-[2(3n+5)] chia hết d
=>[6n+12]-[6n+10] chia hết d
=>2 chia hết d
=>d={1;-1;2;-2}
Mà d=2 hoặc -2 thì phân số trên ko tối giản
=>d=1 hoặc -1
=>phân số trên tối giản
gọi d là UCLN(6n+12;3n+5)
ta có:
[6n+12]-[2(3n+5)] chia hết d
=>[6n+12]-[6n+10] chia hết d
=>2 chia hết d
=>d={1;-1;2;-2}
Mà d=2 hoặc -2 thì phân số trên ko tối giản
=>d=1 hoặc -1
=>phân số trên tối giản
gọi ƯCLN(16n+5,6n+2)=d
có 16n+5 chia hết cho d=> 48n+15 chia hết cho d
có 6n+2 chia hết cho d => 48n+16 chia hết cho d
=> (48n+16)-(48n+15) chia hết cho d
=> 1 chia hết cho d=> d=1=>16n+5 và 6n+2 nguyên tố cùng nhau=>\(\frac{16n+5}{6n+2}\)tối giản
Gọi d là ƯCLN(16n+5;24n+7)
=>16n+5 chia hết cho d và 24n+7 chia hết cho d
=>3(16n+5) chia hết cho d và 2(24n+7) chia hết cho d
=>48n+15 chia hết cho d và 48n+14 chia hết cho d
=>(48n+15)-(48n+14) chia hết cho d
=>1 chia hết cho d
=>d=1;ƯCLN(16n+5;24n+7)=1
Vì ƯCLN(16n+5;24n+7)=1 nên 16n+5/24n+7 tối giản
\(\frac{16n+5}{6n+2}\)là phân số tối giản ta đi chúng minh (16n+5; 6n+2)=1
Đặt: (16n+5; 6n+2)=d
=> 16n+5 chia hết cho d và 6n+2 chia hết cho d
=> 8.(6n+2) - 3.(16n+5) chia hết cho d=> 48n+16 - 48n-15=1
1 chia hết cho d hay d\(\in\)Ư(1) ={-1;1}
Vậy: d=1 => \(\frac{16n+5}{6n+2}\)là phân số tối giản
\(\frac{14n+3}{21n+4}\) làm tương tự như trên
4n+3/6n+5
=2n+3/3n+5(rút gọn 4n và 6n cho 2)
gọi Ư(2n+3/3n+5)là d
Vì 2n+3 và 3n+5 chia hết cho d nên
3(2n+3)-2(3n+5) chia hết cho d
6n+9-6n+10 chia hết cho d
6n+9-6n-10=-1
vậy 4n+3/6n+5 là phân số tối giản
Goi D la UCLN (4n+3,6n+5)
Suy ra 4n+3 :D
3(4n+3) :D
12n+9 :D
Ma 6n+5 : D
2(6n+5) : D
12n +10 :D
Suy ra (12n+10)-(12n+9) :D
(12n-12n)+(10-9) :D
1 : D
D=1
Vay 4n+3/6n+5 la phan so toi gian
(minh coi : la dau hieu chia het nhe )
tức là chứng minh ƯCLN của chúng là 1
Gọi d là ƯCLN (16n+5;6n+2)
Ta có: 16n+5 - 6n+2 chia hết cho d
Suy ra: 3.(16n+5) - 8.(6n+2) chia hết cho d
48n+15 - 48n+16 chia hết cho d
-1 chia hết cho d
Thì d = 1
Vậy \(\frac{16n+5}{6n+2}\) là một phân số tối giản!