Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(2\cdot\frac{1}{\sqrt{n}+\sqrt{n+1}}< \frac{2}{\sqrt{n}+\sqrt{n}}< 2\cdot\frac{1}{\sqrt{n-1}+\sqrt{n}}\) \(\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(\Rightarrow A>2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{101}-\sqrt{100}\right)\)
\(\Rightarrow A>2\left(\sqrt{101}-\sqrt{2}\right)>17\)
+ \(A< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\Rightarrow A< 2\left(\sqrt{100}-1\right)=18\)
Mình đã chứng minh \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\left(n\inℕ^∗\right)\) rồi nha!
Áp dụng vào, ta được: \(\frac{1}{2\sqrt{1}}< \sqrt{1}\)
\(\frac{1}{2\sqrt{2}}< \sqrt{2}-\sqrt{1}\)
\(\frac{1}{2\sqrt{3}}< \sqrt{3}-\sqrt{2}\)
.............................
\(\frac{1}{2\sqrt{2500}}< \sqrt{2500}-\sqrt{2499}\)
\(\Rightarrow1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)
\(< 2\left(\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)\)
\(=2.50=100\)
=> ĐPCM
P/s: sai sót xin bỏ qua cho.