\(\in\)N)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

Ta có :

n\(^3\) + 11n

= n\(^3\) - n + 12n

= n ( n\(^2\) - 1 ) + 12n

= n ( n - 1 )( n + 1 ) + 12n

= ( n - 1 )n( n + 1 ) + 12n

Vì ( n - 1 )n( n + 1 ) là 3 số nguyên liên tiếp.

⇒ ( n - 1 )n( n + 3 ) có tích của 3 số nguyên liên tiếp nên phải chia hết cho 6.

Lại có : 12 sẽ chia hết cho 6

⇒ 12n chia hết cho 6

Vậy ( n - 1 )n( n + 1 ) + 12n sẽ chia hết cho 6

Vậy n\(^3\) + 11n chia hết cho 6

18 tháng 9 2018

Mình ghi nhầm. Bạn thay số 3 đó sang 1 là ok. Bài làm không sai đâu, ghi nhầm thôi. Tick cho mình có động lức cái :))

18 tháng 3 2017

\(A=mn\left(m^2-n^2\right)\) (1)

\(A=mn\left(n-m\right)\left(n+m\right)\)(1)

1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}

2.-Với A dạng (2)

2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2

2.1- nếu n và m lẻ thì (n+m) chia hết cho 2

Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm

19 tháng 3 2017

mơn ạ yeu

8 tháng 2 2018

(n4+6n3+11n2+6n)+24n-24n

= (n4+n3+5n3+5n2+6n2+6)+24.(n-1)

= (n+1)(n3+5n2+6n)+24.(n-1)

=n(n+1)(n2+5n+6)+24.(n-1)

= n(n+1)(n2+3n+2n+6)+24(n-1)

=n(n+1)(n+2)(n+3)+24(n-1)

Vi 4 so tu nhien lien tiep chia het cho 24

=> n(n+1)(n+2)(n+3)⋮24 va 24(n-1)⋮24

=> dpcm

28 tháng 12 2017

Giả sử \(n^2+11n+39⋮49\) \(\Rightarrow4n^2+44n+156⋮49\)

\(\Rightarrow4n^2+44n+156⋮7\) \(\Leftrightarrow4n^2+2.2n.11+121+35⋮7\)

\(\Leftrightarrow\left(2n+11\right)^2+35⋮7\)\(35⋮7\) nên \(\left(2n+11\right)^2⋮7\) mà 7 là số nguyên tố

\(\Rightarrow\left(2n+11\right)^2⋮49\) \(\Rightarrow4n^2+4n+121⋮49\)

\(4n^2+4n+121+35⋮49\) nên \(35⋮49\) => vô lý vậy điều giả sử là sai

vậy n^2+11n+39 không chia hết cho 49