K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

Vì n và n+1 là 2 số liên tiếp 

=>n và n+1 là 2 số nguyên tố cùng nhau

=>ƯCLN(n,n+1)=1

=>n/n+1 là phân số tối giản

19 tháng 2 2019

Gọi d = ƯCLN(n;n+1) \(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản \(\forall n\in N\)

25 tháng 2 2017

Ta gọi UWCLN của 2n-1 và 4n+2 là d

Ta có 2n-1 chia het cho d vậy 4n-2 chia hết cho d

         4n+2 chia hết cho d vậy 4n+2-4n-2 chia het cho d

Vậy 4 chia hết cho d nên d=1 để 2n-1/4n+2 là tối giản

Vậy 2n-1/4n+2 là tối giản   

8 tháng 4 2018

gọi số cần tìm là a.ta có:a=4n+3

                                         =17m+9

                                         =19k+13

\(\Rightarrow a+25=4n+3+25=4n+28=4\left(n+7\right)⋮4\)   

                       \(=17m+9+25=17m+34=17\left(m+2\right)⋮17\) 

                         \(=19k+13+25=19k+38=19\left(k+2\right)⋮19\)

\(\Rightarrow a+25⋮17,4,19\)

\(\Rightarrow a+25⋮1292\)

\(\Rightarrow a=1292k-25\)\(=1292\left(k-1\right)+1267\)

do 1267<1292 nên số dư của phép chia là 1267

2,

gọi ƯCLN[2n+1,2n(n+1)] là d

\(\Rightarrow2n+1⋮d,2n\left(n+1\right)⋮d\)

\(\Rightarrow n\left(2n+1\right)⋮d,2n^2+2n⋮d\)

\(\Rightarrow2n^2+n⋮d,2n^2+2n⋮d\)

\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)

\(\Rightarrow n⋮d\)

MÀ \(2n+1⋮d,n⋮d\Rightarrow2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)

suy ra đpcm

8 tháng 4 2018

thank you bạn nhiều nha !!!!!!!!!!!!

28 tháng 2 2016

ai giúp mình với

23 tháng 3 2017

Gọi d là ƯCLN (21n+4;14n+3)

\(\Rightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)

\(\Rightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)

\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)=1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(21n+4;14n+3\right)=1\)

\(\Rightarrow\frac{21n+4}{14n+3}\)tối giản

Vậy: Với mọi số tự nhiên n thì \(\frac{21n+4}{14n+3}\) tối giản

19 tháng 2 2019

gọi d là ƯC(n; n + 1) 

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

=> n + 1 - n  ⋮ d

=> 1 ⋮ d

=> d = 1

=> n/n+1 là phân số tối giản với mọi n thuộc N

19 tháng 2 2019

\(\text{Gọi ƯCLN( n , n + 1 ) = d}\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\text{ Phân số }\frac{n}{n+1}\text{ là phân số tối giản}\)

29 tháng 4 2019

Đặt \(\left(4n+12,2n+5\right)=d\)

\(\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left[2\left(2n+5\right)\right]⋮d\end{cases}}\)

\(\Leftrightarrow\left[\left(4n+12\right)-2\left(2n+5\right)\right]⋮d\)

\(\Leftrightarrow\left[4n+12-4n-10\right]⋮d\)

\(\Leftrightarrow2⋮d\Leftrightarrow\orbr{\begin{cases}d=2\\d=1\end{cases}}\)

Dễ thấy \(\left(2n+5\right)\) không chia hết cho 2 \(\Rightarrow d=1\)

Vậy \(\left(4n+12,2n+5\right)=1\)​ hay \(\frac{4n+12}{2n+5}\) tối giản với mọi n.

11 tháng 5 2018

đặt \(ƯCLN_{\left(21n+1;18n+1\right)}=d\)

\(\Rightarrow\hept{\begin{cases}21n+1⋮d\\18n+1⋮d\end{cases}}\)

\(\Rightarrow\left(21n+1\right)-\left(18n+1\right)⋮d\)

\(\Leftrightarrow3n⋮d\)\(\Rightarrow21n⋮d\)

mà \(21n+1⋮d\)

\(\Rightarrow21n+1-21n⋮d\)\(\Leftrightarrow1⋮d\)

\(\Rightarrow d=1\)

do đó phân số 21n+1/18n+1  tối giản với mọi số tự nhiên n

11 tháng 5 2018

goi d la ƯCLN(21N+1;18N+1)

TA CÓ 18N+1 CHIA HẾT CHO d

           21N+1 CHIA HẾT CHO d

=> 126N+7 CHIA HẾT CHO d

     126N+6 CHIA HẾT CHO d

=>126N+7-126N-6 CHIA HẾT CHO d 

=>1 CHIA HẾT CHO d

=>d=1

VẬY ƯCLN CỦA TỬ VÀ MẪU LÀ 1 =>PHÂN SỐ TỐI GIẢN VỚI MỌI N THUỘC N