Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào yahoo là biết hoặn đợi vài tuần nữa có người trả lời
Ta có: \(\left(x^{200}+x^{100}+1\right)=\left(x^{100}+1\right)^2\)
\(\left(x^4+x^2+1\right)=\left(x^2+1\right)^2\)
Vì \(1⋮1;x^{100}⋮x^2\forall x\)
\(\Rightarrow x^{100}+1⋮x^2+1\forall x\)
\(\Rightarrow Vớix\in Z,\left(x^{200}+x^{100}+1\right)⋮\left(x^4+x^2+1\right)\)
Đề sai. Bạn cho $a=3,b=5$ thì $a^3b-ab^2=60$ không chia hết cho $240$
\(A=\left(n+1\right)^4+n^4+n^1=\left(n^2+2n+1\right)^2-n^2+\left(n^4+n^2+\right)1\)
\(=\left(n^2+3n+1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\left(n^2-n+1\right)\)
\(=\left(n^2+n+1\right)\left(2n^2+2n+2\right)=2\left(n^2+n+1\right)^2\)
\(\Rightarrowđpcm\)
P/s: mình không chắc...
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM