K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

Sn = 1+a+a2+...+an

aSn = a + a2 + a3 +...+ an+1

aSn - Sn = an+1 - 1

(a - 1)Sn = an+1 - 1

\(S_n=\frac{a^{n+1}-1}{a-1}\)

7 tháng 9 2017

Giúp tớ với

26 tháng 8 2017

Theo đề ta có :

* \(a_2^2=a_1.a_3\) \(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\) (1)

* \(a_3^2=a_2.a_4\Rightarrow\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\left(2\right)\)

* \(a_4^2=a_3.a_5\Rightarrow\dfrac{a_3}{a_4}=\dfrac{a_4}{a_5}\left(3\right)\)

* \(a^2_5=a_4.a_6\Rightarrow\dfrac{a_4}{a_5}=\dfrac{a_5}{a_6}\left(4\right)\)

Từ (1) ; (2) ; (3) và (4) nên ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_4}{a_5}=\dfrac{a_5}{a_6}\)

\(=\dfrac{a_1+a_2+a_3+a_4+a_5}{a_2+a_3+a_4+a_5+a_6}\) (5)

\(=\dfrac{a_1.a_2.a_3.a_4.a_5}{a_2.a_3.a_4.a_5.a_6}=\dfrac{a_1}{a_6}\) (6)

Từ (5) và (6) , ta có :

\(\dfrac{a_1+a_2+a_3+a_4+a_5}{a_2+a_3+a_4+a_5+a_6}=\dfrac{a_1}{a_6}\)

Áp dụng 2 phân số bằng nhau , ta có :

\(\left(a_1+a_2+a_3+a_4+a_5\right)a_6=\left(a_2+a_3+a_4+a_5+a_6\right)a_1\)

\(\left(đpcm\right)\)

31 tháng 8 2017

cảm ơn bạn nhiều

23 tháng 3 2017

Giải:

Đặt \(c_1=a_1-b_1;c_2=a_2-b_2;...;c_{2015}=a_{2015}-b_{2015}\)

Xét tổng \(c_1+c_2+c_3+...+c_{2015}\) ta có:

\(c_1+c_2+c_3+...+c_{2015}\)

\(=\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_{2015}-b_{2015}\right)\)

\(=0\)

\(\Rightarrow c_1;c_2;c_3;...;c_{2015}\) phải có một số chẵn

\(\Rightarrow c_1.c_2.c_3...c_{2015}⋮2\)

Vậy \(\left(a_1-b_1\right)\left(a_2-b_2\right)...\left(a_{2015}-b_{2015}\right)⋮2\) (Đpcm)

20 tháng 6 2017

Sai đề: Không phải a1/a2 mà là a1^3/a2^3

Vì a22=a1a1;a23 = a2a4 nên

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

=> \(\frac{a_1}{a_2}=\frac{2a_2}{2a_3}=\frac{5a_3}{5a_4}\)

Lập phương cả 3 phân số trên, ta có:

\(\frac{a^3_1}{a^3_2}=\frac{8a^3_2}{8a^3_3}=\frac{125a^3_3}{125a^3_4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có điều phải chứng minh