Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu:A=9.(7x+4y)-2.(13x+18y)
=>A=63x+36y-26x-36y
=>A=37x
=> A chia hết cho 37
Vì 7x+4y chia hết cho 37
=>9.(7x+4y) chia hết cho 37
Mà A chia hết cho 37
=>2.(13x+18y) chia hết cho 37
Do 2 và 37 nguyên tố cùng nhau
=>13x+18y chia hết cho 37
Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
\(7x+4y⋮37\)
\(\Rightarrow9\left(7x+4y\right)⋮3y\)
\(\Rightarrow63x+36y⋮37\) (1)
\(2\left(13x+18y\right)=26x+36y\)
xét hiệu :
\(\left(63x+36y\right)-\left(26x+36y\right)\)
\(=63x+36y-26x-36y\)
\(=\left(63x-26x\right)+\left(36y-36y\right)\)
\(=37x+0\)
\(=37x⋮37\) (2)
(9; 2) = 1 (3)
(1)(2)(3) => 13 + x + 18y ⋮ 37
Từng bài 1 thôi nha bn!!!
a) Xét hiệu: A = 9.(7x+4y) - 2. (13x+18y)
A = 63x + 36y - 26x - 36y
A = 37x \(\Rightarrow A⋮37\) Vì 7x + 4y chia hết cho 37
9.(7x+4y) chia hết cho 37
Mà A chia hết cho 37
\(2\left(13x+18y\right)⋮37\)
Do 2 và 37 là nguyên tố cùng nhau
13x+18y chia hết cho 37
Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
Để \(P\in Z\)thì \(n\in Z\)
\(P=\frac{2n+5}{n+3}\)
\(\Rightarrow P=\frac{2n+6-1}{n+3}\)
\(\Rightarrow P=2+\frac{-1}{n+3}\)
Mà \(n\in Z;-1⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
3. Từ đề bài, ta có :
\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)
\(\Rightarrow\frac{2x-1}{18}=\frac{3}{y}\)
\(\Rightarrow\left(2x-1\right).y=18.3=54\)
Mà \(2x-1\)là số lè.
\(\Rightarrow\)Ta có bảng sau :
2x - 1 | 1 | 27 | 9 |
y | 54 | 2 | 6 |
x | 1 | 14 | 5 |
Vậy ta tìm được 3 cặp số ( x;y ) thỏa mãn đề bài là : ( 1;54 ) ; ( 14;2 ) ; ( 5;6 )
P/s : Bài 2 k làm được thì ib mk nhé -.-
Tham khảo:
Ta có: 7x+4y⋮ 37
Xét hiệu: 18.( 7x-4y)-4.( 13x+18y)
= 126x-18.4y-52x-18.4y
= 74x⋮ 37
⇒ 18.( 7x-4y)-4.( 13x+18y)⋮ 37
⇒ 4.( 13x+18y)⋮ 37
⇒ 13x+18y⋮ 37
⇒ Đpcm
Có \(6\left(13x+18y\right)-13\left(7x+4y\right)+52y=74y\)
\(\Rightarrow13\left(7x+14y\right)+74y=7\left(13x+18y\right)\)
Mà \(13\left(7x+4y\right);7y⋮37\Rightarrow7\left(13x+18y\right)⋮37\)
Vậy ta có điều chứng minh