K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Có thể chứng minh đẳng thức sau :

\(rC^r_n=nC^{r-1}_{n-1}\) \(\left(r=1,2,3,....,n-1\right)\)

\(n\) là số nguyên tố và \(r< n\), nên \(n\) là ước của \(C^r_n\)

13 tháng 4 2017

Phân tích nhân tử nhầm=>giải lại

\(A=2n^2-3n^2+n=n\left(2n^2-3n+1\right)=n\left(n-1\right)\left(2n+1\right)\)\(A=n\left(n-1\right)\left(2n+2-3\right)=\left[2n\left(n-1\right)\left(n+1\right)\right]-3\left(n\right)\left(n-1\right)=2B-3C\)

\(\left\{{}\begin{matrix}B⋮3\\C⋮2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2B⋮6\\3C⋮3\end{matrix}\right.\) \(\Rightarrow A⋮6\) => dpcm

13 tháng 4 2017

Lời giải:

\(A=n\left(2n^3-3n+1\right)=n\left(n-1\right)\left(2n^2+2n-1\right)\)

\(A=n\left(n-1\right)\left[2n\left(n+1\right)-1\right]=2n\left(n-1\right)\left(n+1\right)+n\left(n-1\right)=B-C\)\(\left\{{}\begin{matrix}B⋮2\\B⋮3\end{matrix}\right.\)\(\Rightarrow B⋮6\forall n\in N\)

\(C=n\left(n-1\right)\) không thể chia hết cho 6 với mọi n thuộc N

\(\Rightarrow A\) chỉ chia hết cho 6 với điều kiện \(n\ne3k+2\)

ví dụ đơn giải với k=0 => n= 2

\(A=2.2^3-3.2^2+2=14⋮̸6\)

Kết luận đề sai

3 tháng 10 2020

Xét tập A có n phần tử

Ta sẽ đếm số tập con của chúng bằng hai cách:

-Cách 1:

+Số tập con có 0 phần tử là: \(C^0_n\) tập

+Số tập con có 1 phần tử là: \(C^1_n\) tập

...

+Số tập con có 0 phần tử là: \(C^n_n\) tập

Khi đó vế trái của đẳng thức cần chứng minh là tổng số tập con của tập đó

Cách 2: Xét tập B là tập con của tập A

Một phần tử i bất kì thuộc A có thể thuộc B hoặc không thuộc B nên phần tử i đó có 2 khả năng xảy ra. Làm tương tự với n-1 phần tử còn lại thì vế phải của đẳng thức cần chứng minh là số tập con của tập A

26 tháng 10 2020

Ta chứng minh bằng quy nạp.

Ta thấy công thức trên đúng với n = 1.

Giả sử nó đúng đến n. Ta chứng minh nó đúng với n + 1.

Nhận thấy VT là số tập hợp con của một tập hợp có n phần tử.

Nếu ta thêm 1 phần tử thì số tập hợp con tăng thêm chính bằng số tập hợp con của tập hợp đó.

Do đó số tập hợp con của một tập hợp có n + 1 phần tử là: \(2^n+2^n=2^{n+1}\).

Vậy công thức trên đúng với n + 1. Phép cm hoàn tất.

9 tháng 4 2017

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k) 3

Ta phải chứng minh rằng Sk+1 3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)

= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5

= k3 + 3k2 + 5k + 3k2 + 9k + 9

hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk 3, mặt khác 3(k2 + 3k + 3) 3 nên Sk+1 3.

Vậy (n3 + 3n2 + 5n) 3 với mọi n ε N* .

b) Đặt Sn = 4n + 15n - 1

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1 9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1 9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)

Theo giả thiết quy nạp thì Sk 9 nên 4S1 9, mặt khác 9(5k - 2) 9, nên Sk+1 9

Vậy (4n + 15n - 1) 9 với mọi n ε N*

c) Đặt Sn = n3 + 11n

Với n = 1, ta có S1 = 13 + 11n = 12 nên S1 6

Giả sử với n = k ≥ 1 ,ta có Sk = k3 + 11k 6

Ta phải chứng minh Sk+1 6

Thật vậy, ta có Sk+1 = (k + 1)3 + 11(k + 1) = k3 + 3k + 3k + 1 + 11k + 11

= ( k3 + 11k) + 3(k2 + k + 4) = Sk + 3(k2 + k + 4)

THeo giả thiết quy nạp thì Sk 6, mặt khác k2 + k + 4 = k(k + 1) + 1 là số chẵn nên 3(k2 + k + 4) 6, do đó Sk+1 6

Vậy n3 + 11n chia hết cho 6 với mọi n ε N* .



9 tháng 4 2017

a) Với n = 1, ta có:

13n – 1 = 131 – 1 = 12 ⋮ 6

Giả sử: 13k - 1 ⋮ 6 với mọi k ≥ 1

Ta chứng minh: 13k+1 – 1 chia hết cho 6

Thật vậy:

13k+1 – 1 = 13k+1 – 13k+ 13k -1 = 12.13k +13k – 1

Vì : 12.13k ⋮ 6 và 13k – 1 ⋮ 6

Nên : 13k+1 – 1 ⋮ 6

Vậy 13n -1 chia hết cho 6

b) Với n = 1, ta có: 3n3 + 15n = 18 ⋮ 9

Giả sử: 3(k + 1)3 + 15(k + 1) Ta chứng minh: 3(k + 1)3 + 15(k + 1) ⋮ 9

Thật vậy:

3(k + 1)3 + 15(k + 1) = 3. (k3 + 3k2 + 3k + 1) + 15(k + 1)

= 3k3 + 9k2 + 9k + 15k + 18

= 3k3 + 15k + 9(k2 + k + 2)

Vì 3(k + 1)3 + 15(k + 1) (giả thiết quy nạp) và 9(k2 + k + 2) ⋮ 9

Nên: 3(k + 1)3 + 15(k + 1) ⋮ 9

Vậy: 3n3 + 15n chia hết cho 9 với mọi n ∈ N*


22 tháng 11 2017

1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)

\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)

\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)

\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)

\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)

28 tháng 11 2017

Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm

18 tháng 5 2017

Ta có :

\(C^{k+1}_{n+1}=C^k_n+C_n^{k+1}\)

\(C^{k+1}_n=C^k_{n-1}+C_{n-1}^{k+1}\)

...........

\(C^{k+1}_{k+2}=C^k_{k+1}+C_{k+1}^{k+1}\)

Từ đó :

\(C^{k+1}_{n+1}=C^k_n+C_{n-1}^k+....C^k_{k+1}+C^{k+1}_{k+1}\)

= \(C^k_n+C_{n-1}^k+....+C^k_{k+1}+C^k_k\)