K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 12 2017

Lời giải:

Nếu $a$ là số tự nhiên không chia hết cho $5$ thì xét các TH sau:

+) \(a\equiv 1\pmod 5\Rightarrow a^2\equiv 1\pmod 5\)

+) \(a\equiv 2\pmod 5\Rightarrow a^2\equiv 4\pmod 5\)

+) \(a\equiv 3\pmod 5\Rightarrow a^2\equiv 9\equiv 4\pmod 5\)

+) \(a\equiv 4\pmod 5\Rightarrow a^2\equiv 16\equiv 1\pmod 5\)

Như vậy, khi a là số không chia hết cho $5$ thì \(a^2\equiv 1,4\pmod 5\)

----------------------------------------

Ta có:

\(M=a^4(a^4-1)+4(a^4-1)\)

\(M=(a^4-1)(a^4+4)\)

Nếu \(a^2\equiv 1\pmod 5\Rightarrow a^4\equiv 1\pmod 5\)

\(\Rightarrow \left\{\begin{matrix} a^4-1\vdots 5\\ a^4+4\vdots 5\end{matrix}\right.\Rightarrow M=(a^4-1)(a^4+4)\vdots 25\)

Nếu \(a^2\equiv 4\pmod 5\) \(\Rightarrow a^4\equiv 16\equiv 1\pmod 5\)

\(\Rightarrow \left\{\begin{matrix} a^4-1\vdots 5\\ a^4+4\vdots 5\end{matrix}\right.\Rightarrow M=(a^4-1)(a^4+4)\vdots 25\)

Vậy trong mọi TH thì \(M\vdots 25\) (*)

Mặt khác:

\(M=(a-1)(a+1)(a^2+1)(a^2-2a+2)(a^2+2a+2)\)

Nếu a chẵn thì \(a^2-2a+2\vdots 2; a^2+2a+2\vdots 2\)

\(\Rightarrow M\vdots 4\)

Nếu a lẻ thì \(a-1\vdots 2; a+1\vdots 2\Rightarrow M\vdots 4\)

Vậy M luôn chia hết cho $4$ (**)

Từ (*) và (**) kết hợp với (25, 4) nguyên tố cùng nhau suy ra \(M\vdots 100\)

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

30 tháng 7 2017

Vậy thì n thuộc tập hợp nào bạn?

30 tháng 7 2017

n e N nha pạn giải giúp mik vs

AH
Akai Haruma
Giáo viên
2 tháng 6 2024

1/

$A=n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)$

$=(n-1)(n+1)(n+3)$

Do $n$ lẻ nên đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:

$A=(2k+1-1)(2k+1+1)(2k+1+3)=2k(2k+2)(2k+4)$

$=8k(k+1)(k+2)$

Vì $k,k+1, k+2$ là 3 số tự nhiên liên tiếp nên trong đó có ít nhất 1 số chẵn, 1 số chia hết cho 3.

$\Rightarrow k(k+1)(k+2)\vdots 2, k(k+1)(k+2)\vdots 3$

$\Rightarrow k(k+1)(k+2)\vdots 6$ (do $(2,3)=1$)

$\Rightarrow A\vdots (8.6)$ hay $A\vdots 48$.

 

AH
Akai Haruma
Giáo viên
2 tháng 6 2024

2/

$B=n^{12}-n^8-n^4+1=(n^{12}-n^8)-(n^4-1)$

$=n^8(n^4-1)-(n^4-1)=(n^8-1)(n^4-1)$
$=(n^4-1)(n^4+1)(n^4-1)$

Đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:

$(n^4-1)(n^4-1)=[(n-1)(n+1)(n^2+1)]^2$
$=[2k(2k+2)(4k^2+4k+2)]^2=[8k(k+1)(2k^2+2k+1)]^2$

Vì $k,k+1$ là 2 số tự nhiên liên tiếp nên $k(k+1)\vdots 2$

$\Rightarrow 8k(k+1)\vdots 16$

$\Rightarrow (n^4-1)(n^4-1)=[8k(k+1)(2k^2+2k+1)]^2\vdots 16^2=256$

Mà $n^4+1\vdots 2$ do $n$ lẻ.

$\Rightarrow (n^4-1)(n^4-1)(n^4+1)\vdots (2.256)$

Hay $B\vdots 512$ 

11 tháng 8 2017

Xét \(a^6-1=\left(a^3-1\right)\left(a^3+1\right)\)

Đặt  \(a=7k⊥r\)với r=1;2;3. (vì a không là bội của 7)

Ta có \(a^3=\left(7k⊥r\right)^3=343k^3⊥147k^2r+21kr^2⊥r^3\)

Xét r với lần lượt các giá trị 1;2;3.

Từ đó ta suy ra được \(a^3=7l⊥1\)

Xét từng trường hợp trên ta suy ra \(\left(a^3-1\right)\left(a^3+1\right)⋮7\)dẫn đến \(\left(a^6-1\right)⋮7\)

Vậy........

5 tháng 9 2016

Đặt A = 3a + 4b

B = a + 5b

=> 3B - A = 3.(a + 5b) - (3a + 4b)

3B - A = (3a + 15b) - (3a + 4b)

3B - A = 11b chia hết cho11

6 tháng 9 2016

Đặt A = 3a + 4b

Và B = a + 5b

=> 3B - A = 3.(a + 5b) - (3a + 4b)

=> 3B - A = (3a + 15b) - (3a + 4b)

=> 3B - A = 11b chia hết cho 11

=> 3B - A chia hết cho 11

Mầ đầu bài đã cho A chia hết cho 11

=> 3B chia hết cho 11

Vậy B = a + 5b sẽ chia hết cho 11

12 tháng 3 2015

số có 3 chữ số tận cùng chia hết cho 8 thì số đó chia hết cho 8. 444ko chia hết cho 8=> số tự nhiên viết toàn bằng chữ số4 sẽ ko chia hết cho 8 

13 tháng 12 2017

các số 44 \(⋮̸\)8 l 444 \(⋮̸\)8. 

giả sử số tự nhiên A được ghi bởi n chữ số 4 với n > 3 thì : 

A = 44...4444 ( n chữ số 4 ) = 44...400 + 444 = 1000 . A1 + 444, trong đó A1 là số được ghi bởi n - 3 chữ số 4

A = 8 x 125A1 + 444

vì 8 x 125A1 \(⋮̸\) 8, 444 \(⋮̸\)8 suy ra A \(⋮̸\)8 ( đpcm )