Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi UWCLN(2n+3;3n+4) là d
2n +3 chia hết cho d, 3n+4 chia hết cho d
2n.3+3.3 chia hết cho d, 3n.2+4.2 chia hết cho d
6n +9 chia hết cho d, 6n+8 chia hết cho d
6n +9- 6n+ 8 chia hết cho d
6n +9- 6n- 8 chia hết cho d
1 chia hết cho d
d=1
với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.
Cho mình hỏi tại sao đoạn đầu bạn lại tách 2n +3 thành 2n.3 +3.3 và 3n +4 thành 3n.2 +4.2 vậy ạ?
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
gọi d là ƯCLN(3n+4;n+1)
=>3n+4 chia hết cho d (1)
=>n+1 chia hết cho d(2)
Từ (1) và (2) xuy ra
(3n+4) -(n+1) chia hết d
=>(3n+4)-3.(n+1)chia hết d
=>(3n+4)-(3n+3) chia hết d
=>3n+4-3n-3 chia hết d
=>1 chia hết d
=> d thuộc Ư(1)={1}
=>d=1
vậy 3n+4 và n+1 là hai số nguyên tố cùng với mọi n thuộc N
Đặt \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)\(\Rightarrow d=1\)
Từ đó \(ƯCLN\left(2n+1,3n+2\right)=1\)
Và ta kết luận với mọi \(n\inℕ\)thì \(2n+1\)và \(3n+2\)nguyên tố cùng nhau.
Ta có 2n+1 =6n+3
3n+2=6n+4
gọi d là ước của 6n+3 và 6n+4
Ta có (6n+3)-(6n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1
vậy 2n+1 and n+2 là 2 số nguyên tố cùng nhau
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
gọi ƯCLN(2n+3;3n+4) là d
=> 2n+3 chia hết cho d ; 3n + 4 chia hết cho d
=> 2n.3+3.3 chia hết cho d; 3n.2+4.2 chia hết cho d
=> 6n+9 chia hết cho d ; 6n+8 chia hết cho d
=> 6n+9-6n+8 chia hết cho d
=> 6n+9 - 6n - 8 chia hết cho d
=> 1 chia hết cho d
=> d =1
vậy với mọi số tự nhiên n thì (2n+3) và (3n+4) là hai số nguyên tố cùng nhau
bn xét từng trường hợp
n=2k(so chan)
n=2k+1(so le )
nha mình đang bận k làm đc đâu