Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x.P\left(x\right)=\left(x^2-9\right).P\left(x\right)\)
\(\Rightarrow x.P\left(x\right)-\left(x^2-9\right)P\left(x\right)=0\)
Thay x = 0 ta được :
\(0.P\left(0\right)-\left(0^2-9\right)P\left(0\right)=0\)
\(\Rightarrow9P\left(0\right)=0\)
\(\Rightarrow P\left(0\right)=0\) => x = 0 là nghiệm của đa thức P(x) (1)
Thay x = - 3 ta được :
\(-3.P\left(-3\right)-\left[\left(-3\right)^2-9\right].P\left(-3\right)=0\)
\(\Rightarrow-3.P\left(-3\right)=0\)
\(\Rightarrow P\left(-3\right)=0\) => x = - 3 là nghiệm của đa thức P(x) (2)
Thay x = 3 ta được :
\(3.P\left(3\right)-\left(3^2-9\right).P\left(x\right)=0\)
\(\Rightarrow3.P\left(3\right)=0\)
\(\Rightarrow P\left(3\right)=0\) => x = 3 là nghiệm của đa thức P(x) (3)
Từ (1) ; (2) ; (3) => P(x) có ít nhất 3 nghiệm (đpcm)
ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
nếu f(a) = 0 => a là nghiệm của f(x).
do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
+Với x=2 thay vào ta được
2.P(2+1)=(2-2).P(2) =>2.P(3)=0.P(2) => 2.P(2) =0 =>P(2)=0
Suy ra x=2 là một nghiệm của đa thức P(x).
+Với x=0 thay vào ta được
0.P(0+1)=(0-2).P(0) =>0.P(1)= -2.P(0) => 0= -2.P(0) =>P(0)=-2
Suy ra x=0 là một nghiệm của đa thức P(x).
Vậy đa thức P(x) có ít nhất 2 nghiệm
x2+6x+10
=x2+3x+3x+3.3+1
=x(3+x)+3(3+x)+1
=(3+x)(3+x)+1
=(3+x)2+1
Vì (3+x)2>hoặc=0
=> (3+x)2+1>1
Vậy đa thức trên ko có nghiệm
\(B\left(x\right)=x^2+x+1\)
\(=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
.Ta có : \(\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow B\left(x\right)>0\) với mọi x
Vậy \(B\left(x\right)\) vô nghiệm .
\(x^2+x+1=0\)
\(=>x^2+2x+1=x\)
\(=>\left(x+1\right)^2=x\)
\(=>x+1=\sqrt{x}\)
=>loại
\(B\left(x\right)=x^2+x+1\)
\(=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x^2+2.x.\frac{1}{2}+\frac{1^2}{2^2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có :
\(\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow B\left(x\right)>0\)với mọi \(x\)
Vậy \(B\left(x\right)\)vô nghiệm.