K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2015

Đặt UCLN(n2 +3n + 1 , n + 1)= d

n + 1 chia hết cho d => n(n + 1) chia hết cho d

=>N 2 + n chia hết cho d 

=> (n2 + 3n + 1 - n2 - n) chia hết cho d

=> 2n + 1 chia hết cho d

n + 1 chia hết cho d => 2(N  + 1) chia hết cho d => 2n + 2 chia hết cho d

Mà UCLN(2n + 1 ; 2n + 2) = 1

Vậy n2 + 3n  + 1 và n +  1 là 2 số nguyên tố cùng nhau

 

25 tháng 10 2017

a) Gọi d là ƯCLN (n+1,3n+4), d thuộc N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,3n+4\right)=1\)

Vậy n+1 và 3n+4 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(2n+3,4n+8), d thuộc N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow\)d bằng 1 hoặc d bằng 2

Mà 2n+3 không chia hết cho 2 \(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

Vậy 2n+3 và 4n+8 là hai số nguyên tố cùng nhau.

24 tháng 1 2018
a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*) Ta có: ⎧ ⎨ ⎩ n + 1 ⋮ d 2 n + 3 ⋮ d ⇒ ⎧ ⎨ ⎩ 2 n + 2 ⋮ d 2 n + 3 ⋮ d {n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d ⇒ 2 n + 3 − ( 2 n + 2 ) ⋮ d ⇒2n+3−(2n+2)⋮d ⇒ 1 ⋮ d ⇒1⋮d => d = 1 => đpcm b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*) ta có: ⎧ ⎨ ⎩ 2 n + 3 ⋮ d 4 n + 8 ⋮ d ⇒ ⎧ ⎨ ⎩ 4 n + 6 ⋮ d 4 n + 8 ⋮ d {2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d ⇒ 4 n + 8 − ( 4 n + 6 ) ⋮ d ⇒4n+8−(4n+6)⋮d ⇒ 2 ⋮ d ⇒2⋮d ⇒ d ∈ { 1 ; 2 } ⇒d∈{1;2} Mà 2n + 3 là số lẻ => d = 1 => đpcm c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*) Ta có: ⎧ ⎨ ⎩ 3 n + 2 ⋮ d 5 n + 3 ⋮ d ⇒ ⎧ ⎨ ⎩ 15 n + 10 ⋮ d 15 n + 9 ⋮ d {3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d ⇒ 15 n + 10 − ( 15 n + 9 ) ⋮ d ⇒15n+10−(15n+9)⋮d ⇒ 1 ⋮ d ⇒1⋮d => d = 1 => đpcm Đúng Bình luận Báo cáo sai phạm Thu gọn
24 tháng 4 2020

a) Gọi d là ƯCLN (n;n+1) (\(d\inℕ^∗\))

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d}\)

Mà \(d\inℕ^∗\)=> d=1 => ƯCLN (n;n+1)=1

=> n; n+1 nguyên tố cùng nhau với \(n\inℕ\)(đpcm)

b) Gọi d là ƯCLN (n+1; 3n+4) \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)

=> (3n+4)-(3n+3) chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N*

=> d=1

=> ƯCLN (n+1; 3n+4)=1

=> n+1 và 3n+4 nguyên tố cùng nhau với \(n\inℕ\)

c) Gọi d là ƯCLN (2n+1;3n+2) \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)

=> (6n+4)-(6n+3) chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N*

=> d=1 => ƯCLN (2n+1; 3n+2)=1 

=> 2n+1; 3n+2 nguyên tố cùng nhau với n\(\in\)N

27 tháng 12 2024

Sin+sin=h20mi3

 

11 tháng 3 2017

19 tháng 11 2019

gọi UCLN (n+1;n+2) là d

\(\Rightarrow n+1⋮d\)

\(\Rightarrow n+2⋮d\)

\(\Leftrightarrow\left(n+2\right)-\left(n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Rightarrowđpcm\)

Gọi d là ƯCLN của n+1 và n+2

=> \(\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}n+1⋮d\\n+1+1⋮d\end{cases}}\)=>\(1⋮d\)

=> ƯCLN (n+1,n+2) = 1

=> n+1 và n+2 là 2 số nguyên tố cùng nhau

1 tháng 11 2015

a) Gọi d là UCLN ( n ; n+1 )                    

n+1 chia hết cho d                                             

n chia hết cho d                                               

-> n+1-n chia hết cho d                                 

-> 1chia hết cho d

=>N và n+1 là 2 số nguyên tố cùng nhau

=>ĐPCM                                       

1 tháng 11 2015

Còn mấy câu còn lại đâu

 

26 tháng 9 2023

Gọi d là ước chung lớn nhất của 2 số. Nhiệm vụ của ta là chứng minh d=1.

a) 2n+3, n+2 \(⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

b) n+1, 3n+4

\(\Rightarrow\left(3n+4\right)-3\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\)

c) 2n+3, 3n+4

\(\Rightarrow3\left(2n+3\right)-2\left(3n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

26 tháng 9 2023

𝓪, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(2n+3,n+2\right)=d\)

\(\Rightarrow2n+3⋮d\)  

\(\Rightarrow n+2⋮d\Rightarrow2.\left(n+2\right)⋮d\Rightarrow2n+4⋮d\)

\(\Rightarrow2n+4-2n+3⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(2n+3,n +2\right)=1\)

𝓥𝓪̣̂𝔂 \(2n+3,n+2\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾