K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=x^2-2x-3x^2+5x-4+2x^2-3x+7=3\)

b: \(=2x^3-4x^2+x-1-5+x^2-2x^3+3x^2-x=4\)

c: \(=1-x-\dfrac{3}{5}x^2-x^4+2x+6+0.6x^2+x^4-x=7\)

12 tháng 6 2018

\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)

a) Ta có: \(A=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

\(=3\)

Vậy: Với mọi giá trị của x, A luôn 3

hay A không phụ thuộc vào x(đpcm)

b) Ta có: \(B=x\left(x^3+2x^2-3x+2\right)-\left(x^2+2x\right)x^2+3x\left(x-1\right)+x-12\)

\(=x^4+2x^3-3x^2+2x-x^4-2x^3+3x^2-3x+x-12\)

\(=-12\)

Vậy: Với mọi giá trị của x, B luôn bằng -12

hay B không phụ thuộc vào x(đpcm)

5 tháng 8 2020

a)

\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)

\(=-27\)

or

\(A=x^3+27-54-x^3=-27\)

b)

\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3=2y^3\)

c)

\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

d)

\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=6x^2-3x-10\)

A=(3x+7)(2x+3)-(3x-5)(2x+11)  =6x2+9x+14x+21-6x2-33x+10x+55          =(6x2-6x2)+(9x+14x-33x+10x)+(21+55)  =76

20 tháng 7 2018

\(A=\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)

\(\Leftrightarrow A=6x^2+14x+9x+21-\left(6x^2-10x+33x-55\right)\)

\(\Leftrightarrow A=6x^2+23x+21-\left(6x^2+23x-55\right)\)

\(\Leftrightarrow A=6x^2+23x+21-6x^2-23x+55\)

\(\Leftrightarrow A=76\)

\(B=\left(x+1\right)\left(x^2-x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow B=\left(x+1\right)x^2-x\left(x+1\right)-\left(x+1\right)-\left(x-1\right)x^2-\left(x-1\right)x-\left(x-1\right)\)

\(\Leftrightarrow B=x^3+x^2-x^2-x-x-1-x^3+x^2-x^2+x-x+1\)

\(\Leftrightarrow B=\left(x^3-x^3\right)+\left(x^2-x^2+x^2-x^2\right)+\left(x-x-x-x\right)+\left(1-1\right)\)

\(\Leftrightarrow B=-2x\)

16 tháng 4 2017

Ta có : \(A\left(x\right)+C\left(x\right)=3-2x^3-x+x^2-4x^2-3x^2-2x^3+3x-2\)

                                       \(=-4x^3-6x^2+2x+1\)

 \(A\left(x\right)-B\left(x\right)=3-2x^3-x+x^2-4x^2-\left(-x^3+9x^2-8x-5-2x^2\right)\)

                            \(=3-2x^3-x+x^2-4x^2+x^3-9x^2+8x+5+2x^2\)

                              \(=-x^3-10x^2+7x+8\)