K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình như đề sai hay sao ấy

tách mãi mà vẫn cứ phụ thuộc

đặt \(\sin\left(a\right)^2=x;\cos\left(a\right)^2=y;x+y=1\)

Ta có:

\(N=\sqrt{x^2+4y+\sqrt{y^2+4x}}=\sqrt{x^2+4\left(1-x\right)+\sqrt{y^2-4\left(1-y\right)}}\)

\(=\sqrt{x^2-4x+4+\sqrt{y^2-4y+4}}=\sqrt{\left(x-2\right)^2+\sqrt{\left(y-2\right)^2}}=\sqrt{\left(x-2\right)^2+\sqrt{\left(1-x-2\right)^2}}=\sqrt{\left(x-2\right)^2+\sqrt{\left(x+1\right)^2}}\)\(=\sqrt{x^2-4x+4+x+1}=\sqrt{x^2-3x+5}\)

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

8 tháng 7 2016

Có: \(\sin^2+\cos^2=1\)

=> \(\sin^2=1-\cos^2\)

Ta có:

\(\cos^4a+\sin^2a\cos^2a+\sin^2a=\cos^4a+\left(1-\cos^2\right)a\cos^2a+\sin^2\)

\(=\cos^4a-\cos^4a+\cos^2a+\sin^2a=\cos^2a+\sin^2a=1\)

27 tháng 7 2019

1) \(\frac{1-2\sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin^2\alpha+\cos^2\alpha-2sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}\)\(=\frac{\left(sin\alpha-\cos\alpha\right)^2}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\)(đpcm)

2) \(cos^4\alpha+sin^2\alpha\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+\left(1-cos^2\alpha\right)\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+cos^2\alpha-cos^4\alpha+sin^2\alpha\)

\(=cos^2\alpha+sin^2\alpha=1\)(đpcm)