K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 12 2018

\(ab\left(a^2-b^2\right)=a^3b-ab^3=a^3b-ab+ab-ab^3\)

\(=ab\left(a^2-1\right)-ab\left(b^2-1\right)=b\left(a-1\right)a\left(a+1\right)+a\left(b-1\right)b\left(b+1\right)\)

Do \(\left\{{}\begin{matrix}\left(a-1\right)a\left(a+1\right)\\\left(b-1\right)b\left(b+1\right)\end{matrix}\right.\) đều là tích của 3 số nguyên liên tiếp nên chúng chia hết cho 3

\(\Rightarrow b\left(a-1\right)a\left(a+1\right)-a\left(b-1\right)b\left(b+1\right)\) chia hết cho 3

\(\Rightarrow ab\left(a^2-b^2\right)\) chia hết cho 3 với mọi a, b nguyên

8 tháng 12 2018

* Nếu a hoặc b chia hết cho 3\(\Rightarrow ab⋮3\Rightarrow ab\left(a^2-b^2\right)⋮3\)

* Nếu a và b đều chia hết cho 3 \(\Rightarrow ab⋮3\Rightarrow ab\left(a^2-b^2\right)⋮3\)

* Nếu a và b đều không chia hết cho 3 thì ta có a2 và b2 đều chia cho 3 dư 1

Đặt a2=3k+1

b2=3h+1

Suy ra \(a^2-b^2=3k+1-3h-1=3k-3h=3\left(k-h\right)⋮3\Rightarrow a^2-b^2⋮3\Rightarrow ab\left(a^2-b^2\right)⋮3\)

Vậy ab(a2-b2) chia hết cho 3 với mọi số nguyên a và b

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

16 tháng 1 2019

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

16 tháng 1 2019

Câu 2 làm hoi dài nên lười

20 tháng 10 2019

Nhận thấy bất kì binh phương số nào chia cho 7 chỉ có thể dư 0,1,6 (có thể đặt 7k+1;7k+2... để CM)

TH1: Nếu có bất kì số chia hết cho 7 thì hiển nhiên chia hết cho 7

TH2: Nếu ko có số nào chia hết cho 7, theo Dirichlet thì chắc chắn trong a^2,b^2,c^2 có 2 số cùng số dư khi chia cho 7 nên 1 trong 3 (a^2-b^2)... sẽ có 1 số chia hết cho 7 -> chia hết cho 7

23 tháng 11 2019

Ta có: a2+2021b2

=(a2-b2) +2022b2 (1)

Vì a,b không chia hết cho 3 => a2,b2 không chia hết cho 3

Mà a2,b2 là các số chính phương nên
Đặt a2=3m+1,b2=3n+1 (m,n thuộc N)
=> a2-b2=(3m+1)-(3n+1)=3(m-n) chia hết cho 3 (2)
Và 2022b2 chia hết cho 3 (3)
Từ (1),(2),(3) => a2+2021b2 chia hết cho 3 (đccm)

9 tháng 7 2019

1) 

+) a, b, c là các số nguyên tố lớn hơn 3

=> a, b, c sẽ có dạng 3k+1  hoặc 3k+2

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3

=> (a-b)(b-c)(c-a) chia hết cho 3 (1)

+) a,b,c là các số nguyên tố lớn hơn 3 

=> a, b, c là các số lẻ và không chia hết cho 4

=> a,b, c sẽ có dang: 4k+1; 4k+3

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4

th1: Cả 3 số chia hết cho 4

=> (a-b)(b-c)(c-a) chia hết cho 64   (2)

Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192  vì (64;3)=1

=> (a-b)(b-c)(c-a) chia hết cho 48

th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2

=> (a-b)(b-c)(c-a) chia hết cho 32  (3)

Từ (1) , (3) 

=> (a-b)(b-c)(c-a) chia hết cho 32.3=96  ( vì (3;32)=1)

=>  (a-b)(b-c)(c-a) chia hết cho 48

Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2

=>  (a-b)(b-c)(c-a) chia hết cho 16

Vì (16; 3)=1

=>  (a-b)(b-c)(c-a) chia hết cho 16.3=48

Như vậy với a,b,c là số nguyên tố lớn hơn 3

thì  (a-b)(b-c)(c-a) chia hết cho 48

4 tháng 4 2021

\(B=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

=> 2B = n ( n + 1 ) (I)

Ta có :

\(A=1^5+2^5+3^5+...+n^5\)

 \(\Leftrightarrow2A=\left(n^5+1\right)+\left[\left(n-1\right)^5+2^5\right]+\left[\left(n-2\right)^5+3^5\right]+...+\left(1+n^5\right)\)

Nhận thấy mỗi số hạng đều chia hết cho n + 1 nên 2A chia hết cho n + 1 (1)

Ta lại có : \(2A-2n^5=\left[\left(n-1\right)^5+1^5\right]+\left[\left(n-2\right)^5+2^5\right]+...\)chia hết cho n

=> 2A chia hết cho n (2)

Từ (1) và (2) => 2A chia hết cho n ( n + 1 ) (II)

=> Từ (I) và (II) => đpcm

9 tháng 9 2018

k mk đi 

ai k mk

mk k lại

thanks

8 tháng 8 2016

xét số dư của a, b khi chia cho 5 là: 0,1,2,3,4.
ta ghép cặp dần (0,0) (0,1),(0,2)...(3,4) thì chỉ có cặp (0,0) mới đảm bảo \(a^2+b^2+ab\)mới chia hết cho 5.
vậy a, b sẽ có tận cùng là 0 hoặc 5.
nếu a,b có cùng có chữ số tận cùng là 5 loại vì: \(a^2+b^2+ab\)là số lẻ không chia hết cho 2.
nếu a có  chữ số tận cùng bằng 5, b chữ số có tận cùng bằng 0 thì \(a^2+b^2+ab\)là số lẻ nên không chia hết cho 2. (loại vì \(a^2+b^2+ab\)chia hết cho 10).
a, b có chữu số tận cùng bằng 0 khi đó \(a^2+b^2+ab\)là số chẵn nên chia hết cho 2(thỏa mãn).
do a, b có chữ số tận cùng bằng 0 nên \(a^2,b^2,ab\)sẽ có tận cùng là 100 nên \(a^2+b^2+ab\)chia hết cho 100.

8 tháng 8 2016

\(a^2+b^2+ab\) chia hết cho 10

=> \(a^2+b^2+ab\) chia hết cho 2 và 5

\(a^2+b^2+ab=\left(a^2+b^2+2ab\right)-ab\)

\(=\left(a+b\right)^2-ab\)

Vì \(\left(a+b\right)^2;ab\) chia hết cho 2

=> \(\left(a+b\right)^2;ab\) cùng chẵn hoặc cùng lẻ

(+) Nếu \(\left(a+b\right)^2;ab\) (1)

=> a và b cùng lẻ

=> a+b chẵn ( mâu thuẫn với (1) )

=> a và b cùng là số chẵn

Để \(=\left(a+b\right)^2-ab\) chia hết cho 5 thì (a+b)^2 và ab có cúng số dư khi chia cho 10

Mình chỉ biết đến đó

Mà cũng ko chắc là đúng