K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

20 tháng 4 2016

ta có: a^2+3< a^2+c^2+4 

=> a^2/(a^2+3) >= a^2/(a^2+c^2+4)            (1)

tương tự c^2/(c^2+1) >= c^2/(a^2+c^2+4)   (2)

b^2/(b^2+2) >=0                                         (3)

4/(a^2+c^2+4) = 4/(a^2+c^2+4)                    (4)

Lấy (1)+(2)+(3)+(4) ta đk điểu phải chứng minh

20 tháng 4 2016

lớn hơn hoặc = bạn nhé dấu = xáy ra khi a=b=c=0

14 tháng 4 2018

Ta có :

\(\dfrac{a^2}{a^2+3}>\dfrac{a^2}{a^2+b^2+c^2+4}\)

\(\dfrac{b^2}{b^2+2}>\dfrac{b^2}{a^2+b^2+c^2+4}\)

\(\dfrac{c^2}{c^2+1}>\dfrac{c^2}{a^2+b^2+c^2+4}\)

\(\dfrac{4}{a^2+4+c^2}\ge\dfrac{4}{a^2+b^2+c^2+4}\)

Cộng vế với vế lại ta được :

\(P>\dfrac{a^2+b^2+c^2+4}{a^2+b^2+c^2+4}=1\) (đpcm)

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

9 tháng 3 2019

a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

b ) Làm tương tự như a )

9 tháng 3 2019

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)

cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)

b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)

CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)

19 tháng 4 2017

mình hướng dẫn nhé, muộn rồi, ko alfm kịp,

câu a nhân 2 vế với 2, chuyển vế đổi dáu => đpcm

cậu b chuyển vế đổi dấu ok

20 tháng 4 2017

câu a

\(a^2+b^2+1\ge ab+a+b\left(1\right)\\ < =>2a^2+2b^2+2\ge2ab+2a+2b\\ < =>a^2-2a+1+a^2-2ab+b^2+b^2-2b+1\ge0\\ < =>\left(a-1\right)^2+\left(a-b\right)^2+\left(b-1\right)^2\ge0\left(\cdot\right)\)

\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\left(\forall a\right)\\\left(a-b\right)^2\ge0\left(\forall a,b\right)\\\left(b-1\right)^2\ge0\left(\forall b\right)\end{matrix}\right.\)

=> (.) luôn đúng với mọi a và b

=>(1) luôn đúng

dấu bàng xảy ra khi a = b =1

câu b (sửa lại thành >= nhé)

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\left(1\right)\\ < =>a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\\ < =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\left(\cdot\right)\)

\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\left(\forall a\right)\\\left(b-1\right)^2\ge0\left(\forall b\right)\\\left(c-1\right)^2\ge0\left(\forall c\right)\end{matrix}\right.\)

=>(.) luôn đúng

=> (1) luôn đúng

dấu = xảy ra khi a = b = c = 1

xong, chúc may mắn :)

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

15 tháng 4 2018

1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)+ 1 > 0 

\(\Rightarrow\)Đpcm

  b)Xét 3(a+ b+ c2) -(a + b +c)=3a+ 3b+ 3c- a- b- c- 2ab - 2ac - 2bc

                                                  =2a+ 2b+ 2c - 2ab - 2ac - 2bc

                                                  =(a - b)+ (a - c)+ (b - c)2\(\ge\)0 (với mọi a,b,c)

\(\Rightarrow\)Đpcm

2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

         áp dụng cô-sy

\(\Rightarrow\)A\(\ge\)9

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)