K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100

A=  1/1 - 1/2 + 1/2 - 1/3 + 1/3 - ...... - 1/100

A = 1/1 - 1/100

A=  100/100 - 1/100

A=  99/100

28 tháng 2 2016

A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100

A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - ....... - 1/100

A= 1/1 - 1/100

A = 100 / 100 - 1/100

A= 99/100

24 tháng 6 2019

A= \(\frac{1}{2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)

\(\Rightarrow\) 2A = 1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(\Rightarrow\) 2A - A = ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\) ) -

( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\))

\(\Rightarrow\) A = 1 - \(\frac{1}{2^{100}}\) < 1

Vậy: A < 1
\(\frac{1}{2}\)

24 tháng 6 2019

B= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

= 2. \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

= 2. ( \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\) )

= 2. \(\left(\frac{1}{1}-\frac{1}{100}\right)\) = \(\frac{99}{50}\)

\(\Rightarrow\) B = \(\frac{99}{50}\) < \(\frac{100}{50}\) = 2

Vậy: B < 2

Ta có:

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

=1-\(\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3}\right)-...-\left(\dfrac{1}{99}+\dfrac{1}{99}\right)-\dfrac{1}{100}\)

=\(1-\dfrac{1}{100}=\dfrac{100}{100}-\dfrac{1}{100}=\dfrac{99}{100}\)

25 tháng 3 2015

Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

          \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

           \(A=1-\frac{1}{100}\)(TỐI GIẢN CÁC PHÂN SỐ LẬP LẠI )

           \(A=\frac{99}{100}<1\)

                  vậy A<1

10 tháng 1 2022

Ta có \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
        \(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
        = \(\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{100}{99.100}-\frac{99}{99.100}\)
        =\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
        =   \(1-\frac{1}{100}\)
        =     \(\frac{99}{100}\)
Vậy\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)

vi /chia au cong thi cha be hon a

11 tháng 4 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)< 1

~~~

#Sunrise

23 tháng 3 2015

Đầu tiên ta phân tích A

A = 1/1-1/2+1/3-1/4+...+1/99-1/100

sau đó chia vế A thành 2 phần 

A = (1/1+1/3+...+1/99) - (1/2+1/4+...+1/100)

gọi (1/1+1/3+...+1/99) = a 

gọi (1/2+1/4+...+1/100) = b 

áp dụng tính chất (a-b) = (a+b) - 2b

=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - 2(1/2+1/4+...+1/100) 

=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - (1/1+1/2+...+1/50)

=> A = 1/1-1/1+1/2-1/2+...+1/50-1/50+1/51+1/52+...+1/100

=> A = 1/51+1/52+...+1/100

vậy A / B = \(\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2011}{51}+\frac{2011}{52}+...+\frac{2011}{100}}=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{2011\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}=2011\) 

mà 2011 là số nguyên => (dpcm)

23 tháng 3 2015

>>Dat Doan hơi nhầm nè, bạn phải ghi B/A chứ ko phải A/B; thành ra mới bằng 2011 chứ nếu A/B=1/2011 đó!!!

3 tháng 1 2018

Chị dùg cách tính tổng đi

1. Tìm dãy cách đều bao nhiêu

2. Từ công thức tính tổng rồi suy ra

28 tháng 3 2018

A = \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)

A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

A = \(1-\frac{1}{100}\)

A < 1

28 tháng 3 2018

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}< 1\)