Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^3 + 20n = n^3 - 4n + 24n
n^3 + 20n = n.(n² - 4) + 24n
n^3 + 20n = n.(n - 2).(n+2) + 24n
n = 2k
=> n^3 + 20n = 8k.(k - 1).(k+1) + 48k
ta có: k.(k-1).(k+1) là tích 3 stn liên tiếp => chia hết cho 2.3 = 6
=> 8k.(k - 1).(k+1) chia hết 8.6 = 48 => n^3 +20n chia hết cho 48.
Tiếp theo bài giải của bạn Nguyễn Thanh Hằng
\(2n+1⋮d\\ \Rightarrow5n\left(2n+1\right)⋮d\\ \Rightarrow10n^2+5n⋮d\Rightarrow\left(10n^2+9n+4\right)-\left(10n^2+5n\right)⋮d\\ \Rightarrow4n+4⋮d\Rightarrow4.\left(n+1\right)⋮d\\ \Rightarrow n+1⋮d\)
Vì d lẻ do 2n+1 chia hết cho d
\(\Rightarrow2n+2⋮d\\ \Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\\ \Rightarrow1⋮\left(đpcm\right)\)
Gọi \(d=ƯCLN\left(10n^2+9n+4;20n^2+20n+9\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}10n^2+9n+4⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20n^2+18n+8⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow2n+1⋮d\)
đên đây thì bí
đặt M là n^3 -9n^2+2n.
TH1 : n có dạng 2k => M chia hết cho 2 (bạn tự cm)
TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n
=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)
Xét n có dạng 3k => M chia hết cho 3
Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3
Tương tự bạn xét n =3k+2....
=> M chia hết cho 3 vs mọi n (2)
Từ (1) và (2) => M chia hết cho 6
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản
\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)
\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)
\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)
\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))
\(\Rightarrow dpcm\)
Chứng minh rằng với mọi số tự nhiên �n thì phân số 10�2+9�+420�2+20�+920n2+20n+910n2+9n+4 tối giản
. Mình dùng quy nạp nha bạn ^^ 10n – 9n – 1 chia hết cho 27 (*)
. Đặt \(A=\)10n - 9n -1
. Với n = 0, ta có: A = 100-9.0-1=0 chia hết cho 27
. Giả sử với n=k \(\left(k\varepsilon N\right)\) thì mệnh đề (*) đúng, tức là 10k-9k-1 chia hết cho 27
. Với n=k+1, ta có: A=10(k+1)-9(k+1)-1 = 10k.10-9k-9-1 = 10k-9k-1 + 9.10k-10
. Ta thấy 10k-9k-1 chia hết cho 27(cmt) để A chia hết cho 27 thì ta cần cm 9.10k-10 chia hết cho 27
. Xét 9.10k-10, ta có: 9.10k-10 = 90(10k-1-1) = 90.(10-1).M ( M là 1 đa thức)
= 90.9.M chia hết cho 27
. Vậy A chia hết cho 27 =))
A=n4-3n3+5n2-9n+6
=> A=n4+3n3-6n3-n2+6n2-3n-6n+6
=>A=(n4+3n3-n2-3n)+(6-6n+6n2-6n3)
=>A=[n3(n+3)-n(n+3)]+6(1-n+n2-n3)
=>A=(n3-n)(n+3)+6(1-n+n2-n3)
Mà (n3-n) chia hết cho 6
=> (n3-n)(n+3) chia hết cho 6
Lại có 6(1-n+n2-n3) chia hết cho 6
=> (n3-n)(n+3)+6(1-n+n2-n3) chia hết cho 6
=> A chia hết cho 6 (đpcm)
Ta có : n(n+5) - (n-3)(n+2) = n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n+1) \(⋮\) 6 với mọi n
Vậy n(n+5) - (n-3)(n+2) chia hết cho 6 với mọi n là số nguyên
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2+3n+2n+6\)
\(=\left(n^2-n^2\right)-\left(5n-3n-2n\right)+6\)
\(=6⋮6\) (đpcm)
cho tam giác abc vuông tại a có ab=9cm , ac=12cm.gọi M, N lần lượt là trung điểm của ab,ac
a) tính độ dài mn
b)hỏi tứ giác BMNC là hình j ?vì sao?
CHỈ GIÚP VS Ạ