Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
quên, còn bài chứng minh!ahihi
Bài 2:
ta có:
A = \(\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(...\right)\)( nếu vít nốt 3 số cuối thì ko đủ nên tự bn điền ha)
A =\(\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+\left(...\right)\)
A=\(13+3^3.13+...+3^{1998}.13\)
A=\(13.\left(1+3^3+...+3^{1998}\right)⋮13\)
suy ra A chia hết cho 13
a) đặt A =\(1+2+2^2+...+2^{99}\)
ta có:
2A = \(2+2^2+2^3+...+2^{99}+2^{100}\)
2A-A=\(\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
2A-A=\(2+2^2+...+2^{100}-1-2-...-2^{99}\)
A=\(2^{100}-1-2^{99}\)
ukm lâu r ko hay làm mấy bài dạng ntn nên mk quên rùi, ko pik đúng ko! v nên có sai cũng đừng ném gạch bn nhé! mấy bài sau làm tương tự!
A = 1 + 3 + 32 + 33 + ... + 311 C = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 ) C = 1 ( 1 + 3 + 32 ) + 33 ( 1 + 3 + 32 ) + ... + 39 ( 1 + 3 + 32 ) C = 1 . 13 + 33 . 13 + ... + 39 . 13 C = 13 ( 1 + 33 + ... + 39 ) chia hết cho 13 => C chia hết cho 13 ( đpcm )
Ta có:
3+32+33+34+35...+396
=(3+32+33+34+35+36)+(37+38+39+310+311+312)+...+(391+392+393+394+395+396)
=(1+3+32+33+34+35).3+(1+3+32+33+34+35).37+...+(1+3+32+33+34+35).391
=(1+3+32+33+34+35).(3+37+...+391)
=1092.(3+37+...+391)
=7.156.(3+37+...+391) chia hết cho 7
Vậy 3+32+33+34+...+396 chia hết cho 7
Câu 1
A = ab - ba
= (10a + b) - (10b + a)
= 10a + b - 10b -a
= 9a - 9b
= 9(a-b) : hết cho 9
Vậy...
các bn giải giúp mình bài này đi mình đang cần rất gấp giải hết 4 bài lun nha
a) \(3^5+3^4+3^3\)
\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)
\(=3^3\left(3^2+3+1\right)\)
\(=3^3\cdot13⋮13\) (đpcm)
b) \(2^{10}-2^9+2^8-2^7\)
\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)
\(=2^7\left(2^3-2^2+2-1\right)\)
\(=2^7\cdot5⋮5\) (đpcm)
=))